Passenger Arrival Rates at Public Transport Stations

Prof. Dr. U. Weidmann, M. Lüthi, A. Nash TRB 86 ${ }^{\text {th }}$ Annual Meeting, 22 ${ }^{\text {th }}$ January 2007

Public Transport Passenger Behavior

- Only a small share of passengers is dependant on the schedule - in contrast to railways.
- Some passengers do not know the timetable.
- Some passengers do not take their desired trip.
- Some passengers do not believe in the schedule, since the route is always late.

Concept: Classifying passengers as either timetable-independent or timetable-dependent

The smaller the share of passengers who know the schedule, the ...

- ... less notable the schedule (e.g. not a clock-face repeating headway).
- ... worse the passenger information system is.
- ... more unstable the service becomes.
- ... higher the generalized trip costs.

Delay propagation

State of Knowledge - 1981

- For headways of 5 min and less: passengers arrive independently.
- For headways of 7 min and more: passengers arrive based on schedule.
- Peak period: passengers are strongly oriented to schedule.
- Non peak period: passengers have weak orientation to schedule.
- Central influence: How easy it is to remember the schedule.

Previous Research (all earlier than 1981)

Developments since 1981 and Hypothesis

- Introduction of stop-specific schedule information.
- Public transport schedules available on Internet.
- General social changes.
- Hypothesis: the share of schedule-oriented passengers has increased since earlier research.

Research Design:
 Passenger Observation + Questionnaire

- Station must be served by a single route.
- Route must operate with constant headway.
- No alternate waiting areas near the station.
- No transfer possibilities.
- Not the first or last station on a route.
- Not the location of an intermediate turn.
- Busy enough to obtain sufficient data.

Research Area:
 City of Zurich, Switzerland (pop. 365,000)

Zurich Public Transport

- 13 Tram lines
- 18 Bus routes in Zurich
- 6 Trolleybus routes
- 9 Shortline bus routes
- 32 Bus routes around Zurich
- 293 Mio passengers/year
- 503 kilometers
- 521 stations

Temporal density of passenger arrivals at stops between scheduled departure times for successive trips in morning peak

Planned Headway: 200 Seconds

Time between two consecutive trips [sec]
Planned Headway: 400 Seconds

Time between two consecutive trips [sec]

Planned Headway: 300 Seconds

Time between two consecutive trips [sec]
Planned Headway: 600 Seconds

Time between two consecutive trips [sec]

Planned Headway: 360 Seconds

Planned Headway: 900 Seconds

Median passenger waiting time versus headway for Zurich peak periods

Median passenger waiting time vs. headway based on time of day (Zurich data)

Portion of timetable-dependent passengers based on time of day and headway

Model for temporal density of passenger arrivals at bus stops - Timetable-independent

$U(a, b): \quad f_{U(a, b)}(x)=\left\{\begin{array}{cl}\frac{1}{b-a} & \text { if } a<x<b \\ 0 & \text { otherwise }\end{array}\right.$

Model for temporal density of passenger arrivals at bus stops - Timetable-dependent

Johnson-SB density:

$$
\begin{aligned}
& J S B\left(a, b, \alpha_{1}, \alpha_{2}\right): \\
& f_{J S B\left(a, b, \alpha_{1}, \alpha_{2}\right)}(x)= \begin{cases}\frac{\alpha_{2}(b-a)}{(x-a)(b-x) \sqrt{2 \pi}} e^{-0.5\left\{\alpha_{1}+\alpha_{2} \ln \left(\frac{x-a}{b-x}\right)\right\}^{2}} & \text { if } a<x<b \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Model for temporal density of passenger arrivals at bus stops - Timetable-dependent

Shifted Johnson-SB density:

```
JSB
```

$$
f_{J S B_{s h}\left(a, b, \alpha_{1}, \alpha_{2}\right)}(x)=\left\{\begin{array}{cc}
\frac{\alpha_{2}(b-a)}{\left(x+b-\delta_{t s}-a\right)\left(\delta_{t 5}-x\right) \sqrt{2 \pi}} e^{-0.5\left\{\alpha_{1}+\alpha_{2} \ln \left(\frac{x+b-\delta_{t 5}-a}{\delta_{t 5}-x}\right)\right\}^{2}} \\
\text { if } a<x<\delta_{t 5} \\
\frac{\alpha_{2}(b-a)}{\left(x-\delta_{t 5}-a\right)\left(b+\delta_{t 5}-x\right) \sqrt{2 \pi}} e^{-0.5\left\{\alpha_{1}+\alpha_{2} \ln \left(\frac{x-\delta_{t 5}-a}{b+\delta_{t 5}-x}\right)\right\}^{2}} \\
\text { if } \delta_{t 5}<x<b \\
0 & \text { otherwise }
\end{array}\right.
$$

$$
\delta_{t S}=0.8 ; \alpha_{1}=-1.2 ; \alpha_{2}=1
$$

Model for temporal density of passenger arrivals at bus stops: Superposition of uniform and Johnson-SB

$$
\begin{aligned}
& f_{p a}\left(x, \alpha_{1}, \alpha_{2}\right)=c_{s d} \cdot f_{U\left(0, t_{h w}\right)}+c_{s i} \cdot f_{J S S_{s h}\left(0, t_{h w}, \alpha 1 \alpha 2\right)} \\
& f_{p a}\left(x, \alpha_{1}, \alpha_{2}\right)= \begin{cases}\frac{c_{s d}}{t_{h w}}+\frac{c_{s i} \alpha_{2} t_{h w}}{\left(x+t_{h w}-\delta_{t s}\right)\left(\delta_{t s}-x\right) \sqrt{2 \pi}} e^{-0.5\left\{\alpha_{1}+\alpha_{2} \ln \left(\frac{x+t_{h w}-\delta_{s s}}{\delta_{t s}-x}\right)\right\}^{2}} \quad \text { if } 0<x<\delta_{t s} \\
\frac{c_{s d}}{t_{h w}}+\frac{c_{s i} \alpha_{2} t_{h w}}{\left(x-\delta_{t s}\right)\left(t_{h w}+\delta_{t s}-x\right) \sqrt{2 \pi}} e^{-0.5\left(\alpha_{1}+\alpha_{2} \ln \left(\frac{x-\delta_{t s}}{t_{h w}+\delta_{s s}-x}\right)\right\}^{2}} \quad \text { if } \delta_{t s}<x<t_{h w}\end{cases}
\end{aligned}
$$

$$
0
$$

otherwise

Results: Passenger arrival models for varying headways

Planned Headway: 600 Seconds

Planned Headway: 400 Seconds

$$
t_{h w}=10 ; c_{s d}=0.15 ; \delta_{t s}=0.8 ; \alpha_{1}=-1.2 ; \alpha_{2}=1 \quad t_{h w}=6.33 ; c_{s d}=0.7 ; \delta_{t s}=0.2 ; \alpha_{1}=-1 ; \alpha_{2}=1
$$

Influence of perceived reliability (on-time departure) on passenger timetable dependence (morning peak hours/400 seconds headway)

Relation of median wait time to headway

Main Study Results - 1

- Average waiting time has decreased.
- In peak periods many passengers arrive following the schedule, even at 5 minute headways.
- There remains a difference between peak period and off-peak period passenger behavior.
- Schedule remember-ability remains important.

Main Study Results - 2

- The average wait time is well less than half the headway; for example:
- at 15 min headways the average wait time was only 4 min (27% of headway).
- The more punctual the line is, the more strongly passengers depend on the schedule.

Conclusions

- The more punctually a line operates, the more passengers depend on the timetable; thus the line becomes even more stable!
- The more punctually a line operates, the lower the average waiting period.
- The more punctually a line operates and the better the passenger information, the lower the total travel time - at the same transport speed!

