

Passenger Arrival Rates at Public Transport Stations

Prof. Dr. U. Weidmann, M. Lüthi, A. Nash

TRB 86th Annual Meeting, 22th January 2007

Public Transport Passenger Behavior

- Only a small share of passengers is dependant on the schedule - in contrast to railways.
- Some passengers do not know the timetable.
- Some passengers do not take their desired trip.
- Some passengers do not believe in the schedule, since the route is always late.

Concept: Classifying passengers as either timetable-independent or timetable-dependent

The smaller the share of passengers who know the schedule, the ...

- ... less notable the schedule (e.g. not a clock-face repeating headway).
- ... worse the passenger information system is.
- ... more unstable the service becomes.
- ... higher the generalized trip costs.

Delay propagation BAHNHOF 3 ST BAHNHOF 2 œ ш ٥ th,F, ts11/4=ts11/0-(1+8)4 H4 tH4:1+2 ·8·1s11/0·(1+8)3+1s11/0·(1+8)2·82+ +1s11/0·83·(1+8) [†]St1/3 [†]St2/3 ۹ BAHNHOF ! **H3** tH31+2 + tsh/0.(1+8)2 8-1511/0·(1+8)2+82.1511/0·(1+8) tst2/2 tH2.2→3 H2 tH2.1+2 ABFAHRT DES ZUGES "O" Δτ31 tsm/1 = tsm/0 (1+8) ts12/17/ 8-ts11/0-(1+8) ANKUNFT ABFAHRT tH1,2+3 H1 †H1.1+2 t_{SM/O}=Initialstörung des Kurses K1 Haltepunkt-Belastung als Funktion der Zeit: ihr Einfluß auf die Potenzierung der Fahrplanstörungen (K2) (K3) planmäßiger Betrieb Betrieb mit Fahrplanstörung 1 NF Fahrgast-Zulauf tĸ Fahrgast-Einsteig

明明明明明明明明

State of Knowledge - 1981

- For headways of 5 min and less: passengers arrive independently.
- For headways of 7 min and more: passengers arrive based on schedule.
- Peak period: passengers are strongly oriented to schedule.
- Non peak period: passengers have weak orientation to schedule.
- Central influence: How easy it is to remember the schedule.

Previous Research (all earlier than 1981)

明明的野田の田田

Developments since 1981 and Hypothesis

- Introduction of stop-specific schedule information.
- Public transport schedules available on Internet.
- General social changes.
- Hypothesis: the share of schedule-oriented passengers has increased since earlier research.

Research Design: Passenger Observation + Questionnaire

- Station must be served by a single route.
- Route must operate with constant headway.
- No alternate waiting areas near the station.
- No transfer possibilities.
- Not the first or last station on a route.
- Not the location of an intermediate turn.
- Busy enough to obtain sufficient data.

Research Area: City of Zurich, Switzerland (pop. 365,000)

Zurich Public Transport

- 13 Tram lines
- 18 Bus routes in Zurich
- 6 Trolleybus routes
- 9 Shortline bus routes
- 32 Bus routes around Zurich
- 293 Mio passengers/year
- 503 kilometers
- 521 stations

Temporal density of passenger arrivals at stops between scheduled departure times for successive trips in morning peak

Planned Headway: 200 Seconds 25-

Planned Headway: 300 Seconds

Planned Headway: 360 Seconds

特別的問題問題

Planned Headway: 400 Seconds

Planned Headway: 600 Seconds

Planned Headway: 900 Seconds

Time between two consecutive trips [sec]

Median passenger waiting time versus headway for Zurich peak periods

現の時間は日本の

Median passenger waiting time vs. headway based on time of day (Zurich data)

明明日間の日本

Portion of timetable-dependent passengers based on time of day and headway

Model for temporal density of passenger arrivals at bus stops - *Timetable-independent*

$$U(a,b): f_{U(a,b)}(x) = \begin{cases} \frac{1}{b-a} & \text{if } a < x < b \\ 0 & \text{otherwise} \end{cases}$$

Model for temporal density of passenger arrivals at bus stops - *Timetable-dependent*

Johnson-SB density:

$$JSB(a,b,\alpha_1,\alpha_2):$$

$$f_{JSB(a,b,\alpha_1,\alpha_2)}(x) = \begin{cases} \frac{\alpha_2(b-a)}{(x-a)(b-x)\sqrt{2\pi}} e^{-0.5\left\{\alpha_1 + \alpha_2 \ln\left(\frac{x-a}{b-x}\right)\right\}^2} & \text{if } a < x < b \\ 0 & \text{otherwise} \end{cases}$$

$$\alpha_1 = -1.2; \ \alpha_2 = 1$$

Model for temporal density of passenger arrivals at bus stops - *Timetable-dependent*

Shifted Johnson-SB density:

$$JSB_{sh}(a,b,\alpha_{1},\alpha_{2}):$$

$$\begin{cases}
\alpha_{2}(b-a) & e^{-0.5\left\{\alpha_{1}+\alpha_{2}\ln\left(\frac{x+b-\delta_{ts}-a}{\delta_{ts}-x}\right)\right\}^{2}} \\
(x+b-\delta_{ts}-a)(\delta_{ts}-x)\sqrt{2\pi}e^{-0.5\left\{\alpha_{1}+\alpha_{2}\ln\left(\frac{x-\delta_{ts}-a}{\delta_{ts}-x}\right)\right\}^{2}} \\
\frac{\alpha_{2}(b-a)}{(x-\delta_{ts}-a)(b+\delta_{ts}-x)\sqrt{2\pi}}e^{-0.5\left\{\alpha_{1}+\alpha_{2}\ln\left(\frac{x-\delta_{ts}-a}{b+\delta_{ts}-x}\right)\right\}^{2}} \\
& \text{if } \delta_{ts} < x < b
\end{cases}$$

$$0 \qquad \text{otherwise}$$

$$\delta_{ts} = 0.8; \ \alpha_I = -1.2; \ \alpha_2 = 1$$

Model for temporal density of passenger arrivals at bus stops: Superposition of uniform and Johnson-SB

$$f_{pa}(x,\alpha_{1},\alpha_{2}) = c_{sd} \cdot f_{U(0,t_{hw})} + c_{si} \cdot f_{JSB_{sh}(0,t_{hw},\alpha_{1}\alpha_{2})}$$

$$= \begin{cases} \frac{c_{sd}}{t_{hw}} + \frac{c_{si}\alpha_{2}t_{hw}}{(x+t_{hw}-\delta_{ts})(\delta_{ts}-x)\sqrt{2\pi}} e^{-0.5\left\{\alpha_{1}+\alpha_{2}\ln\left(\frac{x+t_{hw}-\delta_{ts}}{\delta_{ts}-x}\right)\right\}^{2}} & \text{if } 0 < x < \delta_{ts} \\ \frac{c_{sd}}{t_{hw}} + \frac{c_{si}\alpha_{2}t_{hw}}{(x-\delta_{ts})(t_{hw}+\delta_{ts}-x)\sqrt{2\pi}} e^{-0.5\left\{\alpha_{1}+\alpha_{2}\ln\left(\frac{x-\delta_{ts}}{t_{hw}+\delta_{ts}-x}\right)\right\}^{2}} & \text{if } \delta_{ts} < x < t_{hw} \\ 0 & \text{otherwise} \end{cases}$$

Results: Passenger arrival models for varying headways

Planned Headway: 600 Seconds

Planned Headway: 400 Seconds

$$t_{hw} = 10$$
; $c_{sd} = 0.15$; $\delta_{ts} = 0.8$; $\alpha_{I} = -1.2$; $\alpha_{2} = 1$

$$t_{hw} = 6.33$$
; $c_{sd} = 0.7$; $\delta_{ts} = 0.2$; $\alpha_{I} = -1$; $\alpha_{2} = 1$

Influence of perceived reliability (on-time departure) on passenger timetable dependence (morning peak hours/400 seconds headway)

特性的影響團團

Relation of median wait time to headway

Main Study Results - 1

- Average waiting time has decreased.
- In peak periods many passengers arrive following the schedule, even at 5 minute headways.
- There remains a difference between peak period and off-peak period passenger behavior.
- Schedule remember-ability remains important.

Main Study Results - 2

- The average wait time is well less than half the headway; for example:
 - at 15 min headways the average wait time was only 4 min (27% of headway).
- The more punctual the line is, the more strongly passengers depend on the schedule.

Conclusions

- The more punctually a line operates, the more passengers depend on the timetable; thus the line becomes even more stable!
- The more punctually a line operates, the lower the average waiting period.
- The more punctually a line operates and the better the passenger information, the lower the total travel time - at the same transport speed!