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ABSTRACT: The benefits of pooling vehicles among routes that emanate from
a common focus terminal are examined. In this strategy, trips are still sched-
uled, but vehicles are not assigned to specific trips. Instead, vehicles belonging
to the pool serve all of the round trips leaving that terminal in a first in/first
out sequence. Pooling improves schedule adherence, since in a pooled system
a bus returning early can ':cover" for a bus returning late. Pooling also facili-
tates interlining (sharing of buses among routes), which reduces the need for
slack time. A procedure is developed for estimating schedule reliability. This
procedure is applied to a set of 8 routes emanating from a Boston area terminal
where it was found that with pooling the fleet size could be reduced by 11%
while at the same time improving schedule adherence.

DESCRIPTION OF VEHICLE POOLING STRATEGY

Customary practice in transit scheduling is for each trip to be sched-
uled in time and for each vehicle to be scheduled to serve a fixed se-
quence of trips. In many cases, during a given period such as the eve-
ning peak, vehicles serve on one route only, making each route an
independent operation. In other cases, vehicles are interlined, i.e., serve
on more than one route, but each vehicle has its own fixed schedule of
trips nonetheless. This paper describes a different operations strategy
called "vehicle pooling" that can be applied to serve a set of routes that
share a common terminal. In this strategy, a number of vehicles are as-
signed to a pool focused at a particular terminal. The vehicles in the pool
are collectively responsible to serve all the trips emanating from (and
returning to) the focus terminal. The trips are all scheduled as in con-
ventional operation, but vehicles are not assigned to particular trips.
Rather, vehicles are under the control of a dispatcher at the focus ter-
minal whose task is simply to select and dispatch one vehicle from the
pool of available vehicles whenever the time for a scheduled departure
arrives. Trips on which a vehicle is dispatched are round trips, bringing
the vehicle back to the focus terminal. (If no vehicles are available for a
scheduled departure, the dispatcher must exercise some sort of remedial
control, just as in an unpooled system.) The vehicle driver's duty in a
pooled system is simply to make the round trip on which he is dis-
patched and then, upon returning to the focus terminal, await another
dispatch. Since in this strategy trips are still scheduled, the public should
perceive no change in operations except that the face of the bus driver
will change from day to day.

To a small extent, the pooling strategy is employed in American transit
systems. If one route is crippled due to vehicle breakdowns or traffic
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delays, the dispatcher can override vehicle schedules by transferring some
buses to the crippled route. Sometimes a small number of buses is per-
manently assigned to "stand by" at a particular terminal in order to cover
for trips that would otherwise be missed; these stand-by vehicles con-
stitute a small vehicle pool. Even with a small pool of stand-by vehicles,
however, most of the vehicles have a fixed schedule, and it is natural
that the dispatcher should try to keep adjustments to the vehicle sched-
ule as small as possible. By having all of the vehicles that operate out
of a given terminal serve essentially on stand-by, the vehicle pooling
strategy gives the dispatcher maximum flexibility in assigning vehicles
to trips without the restriction of a fixed vehicle schedules so that all the
scheduled departures can be served more reliably.

BENEFITS OF VEHICLE POOLING

The main benefits of vehicle pooling arise from two factors. First, pool-
ing can be expected to lead to a greater degree of interlining than occurs
in customary vehicle scheduling. Second, pooling increases the reliabil-
ity of the operation as the on-time departure of each scheduled trip is
not dependent upon a single vehicle being available for it.

Interlining Benefit.-Because of the integer nature of vehicles, a con-
siderable amount of slack will usually exist in a vehicle schedule if ve-
hicles are not interlined. For example, without interlining, a route with
an 84-min run time that operates at 20-min head ways must incorporate
a slack of 16, 36, or, in general, 16 + 20k min, in which k = a non-
negative integer. While a certain amount of slack is necessary to allow
for recovery time, the integer constraints do not generally make it pos-
sible for the slack to be kept at its minimal level. Thus, for example, a
route whose trip schedule demands 4.8 vehicle hours of operation/hr
and requires a minimum 10% slack for recovery time could be served
with 5.3 vehicle hours/hr if no extra slack were included in the schedule,
but would need 6 vehicles (an integer) without interlining. By interlining
two routes that share a common terminal and whose schedules are com-
patible, the integer constraint can be made to apply to the pair and not
to each route separately, reducing the amount of schedule slack. For
example, if a second route operating out of the same terminal and at
the same headway needed 3.4 vehicle hours/hr for running and recov-
ery time, the two routes if not interlined would require 6 + 4 = 10 ve-
hicles, but if interlined would require only 9 vehicles. By interlining all
the routes that share a common terminal, possibilities for efficiently
meshing schedules increase, even if the routes operate at different head-
ways. In addition, the integer constraint will apply to the whole group
of routes, thus possibly reducing still further the amount of slack, lead-
ing to further vehicle savings.

Deriving efficiency through interlining is a goal of both manual and
recent automated scheduling methods, such as those described in Refs.
1 and 2. However, taking the maximum possible advantage of interlin-
ing in conventional operations can result in very complex vehicle sched-
ules. Because it is difficult both for schedulers to develop complex sched-
ules and for dispatchers to grasp them well enough to make good day-
to-day adjustments to them, the extent to which interlining is incorpo-
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rated in customary vehicle schedules probably falls short of achieving
the maximum possible reduction in schedule slack, even when sched-
uling is automated.

In contrast to conventional operations, under the pooling strategy all
the routes served by the pool are effectively interlined, and complex pat-
terns of interlining are no more difficult to create or operate than simple
patterns. Therefore, we should expect a greater degree of interlining to
occur in a pooled system, with a consequently greater reduction in un-
necessary schedule slack.

Swapping Benefit.-By enabling vehicles to "cover" for each other,
vehicle pooling increases reliability, defined in this context as the prob-
ability of all scheduled departures being made on time. This benefit is
best demonstrated by an example. Suppose departures 1 and 2 are
scheduled for times D1 and D2 at the same terminal. In an unpooled
system, each departure would be scheduled as a part of a block of trips
served by a single vehicle. The trip that precedes trip i in its block of
trips is called the predecessor of trip i. If tj denotes the time at which
trip i's predecessor is completed, then the reliability, R, (the probability
that both departures will be made on time) is

R = P[(t1:S D1) n (t2:S D2)] (1)

If instead vehicles 1 and 2 are pooled for serving departures 1 and 2,
the reliability is

R = P[(t1 :s D1 n t2 :s D2) U (t2:S D1 n t1 :s D2)] (2)

Assuming that t1 and t2 are independent, the reliability in the unpooled
case is P(t1 :s D1)P(t2 :s D2), while the reliability in the pooled case can
be shown to be

P(t1 :s D1)P(t2:S D2) + P(t2:S D1)P(D1 :s t1 :s D2) •••.••••••.•..••• (3)

The second term in Eq. 3 is the reliability gain derived from pooling. It
reflects the event that vehicle 2 arrives in time to make the first depar-
ture and vehicle 1, while arriving too late for the first departure, arrives
in time for the second.

To demonstrate these results numerically, suppose t1 and t2 are nor-
mally distributed with means (D1 - s) and (D2 - s), respectively, in
which 5 represents schedule slack. Suppose both t1 and t2 have a stan-
dard deviation of (J = 5/k. Then if <l> = the cumulative standard normal
distribution function, the unpooled reliability is [<l>(k)]2 and the pooled
reliability is

[
k-k(D -D)]{ [k+k(D -D)] }R = [<l>(k)]2 + <l> 52 1 <l> 52 1 - <l>(k) (4)

If, e.g., k = 1 and the offset between the two departures, (D2 - D1),

equals the schedule slack, then the unpooled reliability is 0.707 while
the pooled reliability is 0.775. Pooling two vehicles to cover two depar-
tures in this case increases the probability of on time performance by
about 0.07.

The improved reliability demonstrated by this simple example comes
about because, relative to a system with fixed vehicle schedules, pooling
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creates more ways in which a trip schedule can be met. While in the
example only one additional way was created (vehicle 2 making the first
departure and vehicle 1 making the second), pooling many vehicles to
cover many trips will create many new ways to meet a given trip sched-
ule, each of which adds a little to the overall system reliability.

ESTIMATING RELIABILITY OF POOLED SYSTEM

As pointed out earlier, each way of meeting the trip schedule con-
tributes to the probability that the schedule will be kept. In even a mod-
erately sized system, the number of ways is prohibitively large. Suppose
each trip is given an index, i, and suppose that each trip i has a certain
number of trips, Uj, that could be trip i's predecessor, i.e., the trip per-
formed prior to trip i by the bus that is dispatched on trip i. Then if
there are m trips to be served during the time period of analysis, there
are I1i'~1 Uj ways of meeting the schedule. If Uj = 4 for all i and if m =
20, there will be 420 ways to keep the schedule, and thus 420 terms in
the reliability sum. Therefore, it is necessary to estimate the reliability
for all but the smallest systems.

One important simplifying assumption used in this research is that
travel times on different trips are independent. Strong correlation of travel
times of all the trips on a single route is to be expected when there is a
major crisis on that route, such as a lane closing or an accident. How-
ever, in normal operations, the random delays caused by demand and
traffic fluctuations show less dependence across trips both of different
routes and of the same route.

The approach taken to estimating pooled reliability was to compute a
lower bound by summing only a subset of terms belonging to the reli-
ability sum. The included terms are the reliability contributions of certain
categories of ways the trip schedule can be met. These categories are
constructed in a hierarchy as follows.

1. Base schedule.-A base schedule, with each vehicle assigned to a
particul~l.fsequence of trips as in an unpooled system, is constructed
using 80 percentile run times with a first in/first out heuristic. The first
term in the pooled probability estimate is then the probability of being
able to keep this base schedule. This probability is the unpooled reli-
ability of the base schedule, Ru, given by

Ru = P[(t1 :s Dd n (t2 :s D2) n n (tm :S Dm)] (5)

in which tj = completion time of the trip that, in the base schedule, is
meant to precede trip i, assuming that the predecessor trip began on
time; Dj = scheduled departure time of trip i; and m = number of trips.

Calling rj = P(tj :S Dj) the reliability of trip i, and assuming inde-
pendence among trips, the unpooled reliability can be expressed as

Ru = IT rj ........................................• ············· (6)
i=l

If, for the given number of buses, the probability of meeting the base
schedule constructed using 80percentile times is zero, a new base schedule
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can be constructed using 60 percentile run times, or a still smaller per-
centile if necessary. In most cases, the unpooled reliability of the base
schedule will be the largest term in the pooled reliability estimate, and
thus, it is worth some computational effort to find a base schedule with
a good unpooled reliability.

The remaining ways of keeping the trip schedule are all modifications
of the base schedule. They are structured hierarchically, with each way
incorporating the condition that earlier listed ways of keeping the trip
schedule could not be met, thus ensuring that all the ways are mutually
exclusive, so that their probabilities can be summed.

2. Nearest neighbor (NN) swap.-The base schedule cannot be kept,
but all departures can be made on time if the bus that, in the base sched-
ule, was assigned to trip k (bus k) serves instead trip k + 1. At the same
time, the bus that in the bus schedule was assigned to trip k + 1 (bus
k + 1) serves trip k. The probability of this event, PNNk, is

P(tk+1 :s Dk) P(Dk < tk:S Dk+1 )Ru
PNNk = (7)

(rkrk+d

The total probability of all simple NN outcomes, RNN' is
m-1

RNN = 2: PNNk ..••••••.. ~•.••......•.....•.••• , •••.•.••••••.•••.• (8)
k=1

3. Pair of NN swaps.-Neither the base schedule nor any single NN
swap schedule can be kept, but all departures can be made on time if
a pair of trips, j and j + 1, make a NN swap and another distinct pair
of trips, k and k + 1, make a NN swap. The probability of this outcome,
PNNjk, can be shown to be

PNNjPNNk
PNNjk = (9)

Ru

The probability of all events of this type is R2NN, given by
m-3 m-l

R2NN = 2: 2: PNNjk ••...•.•••.•••.••.••.••.•..•••••.•••••. • •••• (10)
j=1 k=j+2

4. Three NN swaps.-The base schedule cannot be kept as is or with
one or two NN swaps, but all departures can be made on time with
three distinct NN swaps. If the trip pairs are trips i and i + 1, j and
j + 1, and k and k + 1, the probability of this outcome, PNNijk, can be
shown to be

PNNijPNNk
PNNijk = R

u

(11)

and the total probability of outcomes of this type, R3NN' is
m-S m-3 m-l

R3NN = 2: 2: 2: PNNijk ..••..•.•..•..••••..••.••••.••••••.••• (12)
;=1 j=i+2 k=j+2

5. 2-3-1 swap.-If bus 1 arrives too late for both trips 1 and 2, but on
time for trip 3, while bus 2 arrives early enough to make trip 1 and bus
3 arrives early enough for trip 2, a "2-3-1" swap (with bus 2 serving trip

272

r



1, bus 3 serving trip 2, and bus 1 serving trip 3) can occur, enabling all
three trips to be made on time. Because bus 1is too late for trips 1and
2, neither the base schedule nor a schedule with only NN-type swaps
can be kept. The outcome in which the base schedule cannot be kept as
is or with NN swaps but can be kept with a single 2-3-1 swap involving
trips k, k + 1, and k + 2 has the probability P231k, which can be shown
to be

The total probability of outcomes of this type, R231 , is
m-2

R231 = 2: P231k " (14)
k=l

6. 3-1-2 swap.-In this outcome, neither buses 1 nor 2 arrive early
enough to serve trip 1, while bus 3 is early enough for trip 1, bus 1 is
early enough for trip 2, and bus 2 is early enough for trip 3. The prob-
ability that the base schedule thus modified by a 3-1~2 swap involving
trips k, k + 1, and k + 2 can be kept (and that none of the previously
mentioned schedules can be kept) is

P(tk+2:S Dk)P(Dk < tk:S Dk+dP(Dk < tk+1 :s Dk+2)Ru
P3l2k = ... ....... (15)

rk rk+1rk+2
The total probability of outcomes of this type, R312 , is

m-2

R312 = 2: P312k : .' .- (16)
k=l

7. 3-2-1 swap.-This outcome is like a 3-1-2 swap, except that bus 1
arrives too late for trip 2 but early enough for trip 3, and bus 2 arrives
early enough for trip 2, with bus 3 still early enough to make trip 1.
P321 , the probability of a single outcome in this category involving trips
k, k + 1, and k + 2, is

P(tk+2:S Dk)P(Dk < tk+1 :s Dk+1)P(Dk+1 < tk:S Dk+2)Ru
P321k = (17)

rk rk+ 1rk+2
The total probability of outcomes of this type, R321 , is

m-2

R321 = 2: P32lk ~ (18)
k=l

8. Other combinations of two distinct swaps.-The pair of NN swaps,
presented earlier, is a combination of two distinct "basic" swaps that
can make it possible to meet the trip schedule when a single basic swap
is insufficient. There are 15 other pairs involving the four basic types of
swaps examined earlier (NN, 2-3-1, 3-1-2, and 3-2-1 swaps). The prob-
ability of a particular outcome involving a distinct pair of swaps can be
shown, as in the double NN swap case, to be

P,lP,2 ........................................................ (19)
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in which Ps1 and Ps2 = probabilities of the outcomes involving' the single
swaps. The total contribution of the outcomes of these combinations to
the probability that the trip schedule can be met is simply the sum of
the probabilities of all the distinct outcomes.

While the outcomes included in the preceding list constitute only a
small fraction of all possible outcomes, there is reason to believe that
they represent the most likely outcomes. Outcomes not included have
a very low probability of occurrence because they involve many swaps
or because they involve a bus being too late for its own scheduled trip
as well as for at least the next two trips.

A further enhancement to the reliability estimate was made by giving
special treatment when there are simultaneous scheduled departures.
Trips with the same departure time cannot cover for each other (if a bus
is too late for one, it is too late for the others), and so all swaps involving
simultaneous departures will have zero probability. Therefore, each group
of simultaneous departures was considered as a "supertrip" for pur-
poses of defining the various swaps. Any outcome containing a swap
that includes a supertrip is then expanded to include the whole set of
outcomes in which the supertrip is replaced by one of its constituent
trips. The expanded outcomes that contain two swaps that both include
the same supertrip can be included in the probability sum as long as the
supertrip is not replaced in both swaps by the same constituent trip.

This lower bound approximation of the pooled reliability can be in-
expensively computed, even for a moderately large system. The number
of computations involved without the simultaneous departures modifi-
cation has been approximated as (5/6)m3 + 42m2 + 30m. Thus, for a
system with 50 departures, there are approximately 2 x 105 computa-
tions. The simultaneous departure modification adds somewhat to this
computational burden. For especially large systems, it may be necessary
to eliminate the triple NN swap (which accounts for the m3 term). The
application reported herein, while including triple NN swaps, omitted
outcomes involving 3-2-1 swaps since they were estimated to be about
an order of magnitude less likely than 3-1-2 swap outcomes and two
orders of magnitude less likely than 2-3~1swap outcomes.

ApPLICATION

The Sullivan Square Station of the Massachusetts Bay Transportation
Authority's Orange Line serves as the terminus for 9 bus routes, all of
which can be categorized as feeders, although one also performs a cross-
town function. One of these routes operates very infrequently, which
made data gathering difficult. Therefore, this study focuses on the eight
major routes terminating at that station during the 3-6 p.m. peak. Be-
tween them, these routes have 119departures from Sullivan Square dur-
ing that period.

Round trip run times were observed on four different weekdays,
yielding between 16 and 44 observations per route (26 observations on
average), from which run time histograms for each route were con-
structed with one minute intervals. The histogram of each route was
used directly as the run time distribution for every trip made on that
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Unpooled reliability
(2)

TABLE 1.-Unpooled versus Pooled Reliability for Different Numbers of Buses

Pooled reliability
(3)

Number of buses
(1 )

1.0
0.9412
0.8082
0.6041
0.3773
0.1579
0.1323
0.0554
0.0053
0.0001
0.0000
0.0000
0.0000

51
50
49
48
47
46
46a

45
44
43
42
41
40

1.0
1.0
1.0
1.0
1.0
1.0

1.0
1.0
0.9592
0.6803
0.1842
0.0066

aCurrent system; buses not optimally deployed.

route. The routes are relatively short, with mean round trip run ·times
of 40-67 min, and relatively reliable, with standard deviations of run
time between 2.5 and 5.1 min (3.4 min on average). The data do not
include situations of vehicle breakdowns or other major crises, and so
the results obtained are relevant to operation under normal conditions.
The current schedule uses 46 buses and involves no interlining except

among two routes where every vehicle alternates cyclically between the
two routes. The reliability of the current schedule, without pooling, was
calculated to be 13.2%. (Recall that our definition of reliability, the prob-
ability that every trip can be made on time, is quite strict, so that al-
though the preceding reliability is low, operations appear quite smooth
with late departures occurring only occasionally.) Redeploying one bus
from one route to another increased the unpooled reliability slightly to
15.8%. This latter figure is used as a basis of comparison for comparing
pooled to unpooled performance.

Table 1 shows the unpooled reliability and lower bound estimates of
the pooled reliability of the system for different numbers of buses. In
computing both pooled and unpooled reliability it was assumed that the
first trip made by each bus was made with 100% reliability. In comput-
ing unpooled reliability, buses were optimally deployed among routes,
and interlining was kept restricted to the pair of routes on which it is
now practiced. .

The current operating plan (unpooled, limited interlining) has, as
mentioned earlier, a 15.8% reliability with the currently used 46 buses.
It would need 51 buses to have 100% reliability, and would have 0%
reliability with 42 or fewer buses. Under pooled operation, however,
only 44 buses, two fewer than the number now used for the 8 routes,
are needed for the reliability to be 100%. With only 41 buses, the pooled
reliability is at least 18.4%, showing a possible savings of 5 of 46 buses
without worsening reliability. Comparing the number of buses needed
to achieve 100% reliability, there is a savings of 7 of 51 buses.

275



TABLE 2.-Contribution to Pooled Reliability of Base Schedule and of Different
Classes of Swaps

Number of Buses

Type of schedule 41 42 43 44 45
(1) (2) (3) (4) (5) (6)

Base 0.0412 0.3124 0.6666 0.8145 1.0000
Nearest neigh-

bor swap 0.1056 0.2717 0.2321 0.1685 0.0000
Pairs of NN

swaps 0.0049 0.0303 0.0200 0.0106 0.0000
Triplets of NN

swaps 0.0000 0.0001 0.0002 0.0002 0.0000
2/3/1 swaps 0.0226 0.0442 0.0326 0.0000 0.0000
Pairs of 2/3/1

swaps 0.0002 0.0004 0.0000 0.0000 0.0000
3/1/2 swaps 0.0070 0.0097 0.0029 0.0000 0.0000
Pairs of 3/1/2

swaps 0.0000 0.0000 0.0000 0.0000 0.0000
NN swap &

2/3/1 swap 0.0020 0.0094 0.0044 0.0000 0.0000
NN swap &

3/1/2 swap 0.0006 0.0019 0.0004 0.0000 0.0000
2/3/1 swap &

3/1/2 swap 0.0001 0.0002 0.0000 0.0000 0.0000
Total pooled

reliability 0.1842 0.6803 0.9592 1.0000 1.0000

Table 2 shows the contribution to the pooled reliability of the various
outcomes considered in the lower bound estimate, i.e., the base sched-
ule outcome and the various swap outcomes described earlier. The out-
comes contributing the most were the base schedule, the single and dou-
ble NN swap, and the 2-3-1 swap. Contributing the least were pairs of
3-1-2 swaps, which contributed nothing (to four decimal places).

From the results presented in Table 2, it is possible to isolate the in-
terlining benefit from the swapping benefit. Recall that the "base sched-
ule reliability" reported in Table 2 is the probability of keeping, without
swapping, a base schedule that is constructed with no limits on inter-
lining. The difference between unpooled reliability reported in Table 1
and the base schedule reliability reported in Table 2 can thus be inter-
preted as the interlining benefit of pooling. The swapping benefit (ac-
tually a lower bound estimate of the swapping benefit) is then the dif-
ference between the base schedule reliability and the total pooled reliability
estimate. Fig. 1 summarizes the reliability benefit attributable to inter-
lining and to swapping for different numbers of buses. For 51 or more
buses, unpooled operation has 100%reliability and so neither interlining
nor swapping contribute anything to reliability. As the number of buses
decreases to 45, unpooled reliability drops to only 5.5% while the reli-
ability contribution of interlining grows to 94.5%. Up to this point,
swapping continues to contribute nothing to the overall reliability, since
the base schedule reliability is still 100%. As the number of buses further
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Reliability Benefit of Pooling:
Interlining Benefit and Swapping Benefit

Additional Reliability
Contribution" due to Swapping

Additional Reliability Contribution
due to Unrestricted Interlining

1.0

.9

Unpooled
Reliability

.8

.7......
.3

~2

.1

.0

40 41 42 4J 44 4.5 46 47 48 49 .50 .5/
Number of Buses

FIG. 1.-Reliability Benefit of Pooling: Interlining Benefit and Swapping Benefit

decreases, the unpooled reliability quickly becomes negligible, and the
interlining contribution to the pooled reliability begins to fall while the
reliability contribution of real-time swapping grows. With 42 buses, the
interlining contribution to the pooled reliability is 31.2%, and the swap-
ping contribution peaks at 36.8%. With fewer than 42 buses, both the
interlining and the swapping contributions decrease, but the swapping
contribution becomes more and more dominant.

In terms of buses saved, the interlining benefit accounts for the greater
part of the pooling benefit. With 42 buses, a schedule with no interlining
restrictions could maintain the existing reliability without any real-time
swapping, compared to 41 with both interlining and swapping. Thus
the interlining benefit accounts for 4 of the 5 buses that pooling can save
at the current reliability level. For 100% reliability, only 45 buses are
needed if unrestricted interlining but not swapping is allowed (com-
pared to 44 with both interlining and swapping). In this case, 6 of the
7 buses saved through pooling can be attributed to interlining. These
results indicate that, at least in the Sullivan Square case, the interlining
benefit of pooling is its most important benefit.

CONCLUSIONS

From the results of this application, both the performance of the re-
liability estimation procedure and the practical value of the pooling strat-
egy can be evaluated. The estimation procedure appears to be quite ac-
curate, as even some of the classes of outcomes included in the reliability
sum contributed nothing. Thus, it is likely that accounting for all the
other possible ways of meeting the trip schedule would have added little
to the reliability sum (however, we have not proven this). Modifying
the procedure by specially treating simultaneous departures significantly
enhanced its performance. The good performance of the procedure is
also due in part to the small run time standard deviations for the routes
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leaving Sullivan Square. With more variable run times, the more remote
swapping possibilities take on greater probabilities, although we feel that
for the full range of realistic values the estimate should still be good.

The magnitude of the pooling benefits, particularly since this system
has quite reliable run times, speaks well for the value of the pooling
strategy. The dominance of the interlining benefit over the swapping
benefit, however, raises the question of whether the majority of the
pooling benefit could be obtained by more aggressive use of interlining
in the context of conventional scheduling practice. One way of testing
this hypothesis is to apply a similar unalysis to a system of routes whose
present schedules incorporate more interlining. Lack of data prevented
this research from performing this next logical step. However, it is our
opinion that the complexity of conventional scheduling practice will hinder
schedule makers from constructing schedules two to four times a year
that achieve the full interlining benefit. Thus, the interlining benefit of
pooling will be substantial even where interlining is already in extensive
use. At the same time, pooling can greatly relieve the burden of sched-
ulemakers who will only have to assign vehicles to a pool for a certain
period of time to be sure that all trips served by that pool are covered
rather than trying to fit every trip into the schedule of a particular ve-
hicle. Furthermore, the swapping benefit should be more significant in
systems with more run time variability.

While it has been the purpose of this paper to assess the benefits of
pooling, mention should also be made of the difficulties an operator is
likely to encounter in implementing this strategy. The main difficulty to
be expected is in supervising the drivers. Only the dispatcher will know
which driver went out on each trip (and he will only remember if he
keeps a log), and so supervisors will have to check regularly with the
dispatcher to know where each driver ought to be. Furthermore, with
the conventional operating strategy, the driver has an incentive to return
on time, since if he returns late he will lose some layover time. In pooled
system, however, the consequences of a driver returning late are spread
over the entire pool of drivers, and so the incentive to return on time
is diminished, making supervision more important. Another difficulty
is that the dispatcher will often have to adjust his simple first in/first
out rule to account for drivers whose shift is about to end, in order to
avoid having a driver out on a trip when his scheduled assignment ends,
resulting in overtime costs.

Work rules should not present any more difficulty to the pooled sys-
tem than to the unpooled system. "Run as directed" assignments exist
now in the industry within the traditional work rules framework. How-
ever, pooling does not eliminate any work rule related scheduling prob-
lems, since the demand for drivers will still vary throughout the day,
and assignments must still conform to work rules regarding length,
spread, etc.
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ApPENDIX 1I.-NoTATION

The following symbols are used in this paper:

Dj = scheduled departure time of trip i;
k = normalized schedule slack;
m = number of trips;
P = probability of specific outcome;
R = reliability or (with subscript) reliability contribution;
Ru = unpooled reliability;

rj = reliability of trip i;
s - schedule slack;
tj = end time of trip i's predecessor;

Uj = number of potential predecessors of trip i;
<t> = cumulative standard normal distribution; and
(J = standard deviation of running time.
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