

Transportation Research Board Washington, January 2007

A PROPOSED INFRASTRUCTURE PRICING METHODOLOGY FOR MIXED-USE RAIL NETWORKS

Francisco Calvo, Juan de Oña

Department of Civil Engineering, University of Granada, Spain

Andrew Nash

Institute for Transport Planning and Systems, ETH Zurich, Switzerland

- 1.- Introduction
- 2.- Proposed pricing methodology
- 3.- Application
- 4.- Conclusions

1.- Introduction

RR. INFRAS. PRICING IN EUROPE	Marginal Social Cost (MSC)	Full Cost Pricing Model (FC)		
Main Objectives	Transport system sustainability as a whole	 Cost recovery Increased railway efficiency Transfer of traffic from road 		
Pricing Level	ricing Level Costs directly related to train traffic (10% of FC) (40-65% of FC)			
Pricing System	Simple Tariff: variable charges (train-Km, TKB)	Two-part tariffRamsey Prices		
Examples	Sweden, Switzerland, Denmark	France, Spain, Italy, United Kingdom, Germany		
•Complex call international	culation of total rate in routes			
•Pass: 0.6-5. Freight: 0.2-3	0 €/train-Km; 3.8 €/train-Km	=> NEW INTER-OPERABILITY PROBLEM		
•Different cor access charge	nditions for access (fixed			

DIAGRAM: COSTS CONSIDERED

4

INFRASTRUCTURE MANAGER'S DIRECT COSTS

INFRASTRUCTURE MANAGER'S DIRECT COSTS

INFRASTRUCTURE MANAGER'S DIRECT COSTS

7

ADDITIONAL FEES TO INCREASE COST RECOVERY

ADDITIONAL FEES TO INCREASE COST RECOVERY

9

FEES RELATED TO EXTERNAL COSTS

PRICING METHODOLOGY INFLUENCE FACTORS

- RAILROAD NETWORK FEATURES
 - Rail Line Type:
 - Conventional lines
 - High speed lines

- Network's Level of Congestion

- Lines around major cities
- Border crossings
- Mountain passes

•TRANSPORTATION SERVICES

- -Suburban trains
- -Regional trains
- -Conventional Long-Distance trains
- -High-Speed trains
- -Freight trains

PRICING METHODOLOGY INFLUENCE FACTORS

- GOVERNMENT SUBSIDIES TO THE RAILROAD
- MARKET COMPETITIVE SITUATION FOR RAILROAD
- TRANSPORT SYSTEM SUSTAINABILITY

MAIN EXTERNAL COSTS	Passengers (Eu	ros/1000 p-km)	Freight (Euros/1000 TK)		
	Road	Railroad	Road	Railroad	
Accidents	32,4	0,8	7,6	0,0	
Air pollution and climate change	29,7	13,1	59,7	11,5	
Up- and downstream processes	5,0	3,4	8,8	2,4	
Noise	5,1	3,9	7,4	3,2	
Congestion	8,8	0,0	10,2	0,0	
Total	81,0	21,2	93,7	17,1	

- PUBLIC SERVICE CONSTRAINTS
- EUROPEAN UNION TRANSPORTATION POLICIES

ADJUSTING THE PRICING MODEL TO RAIL SERVICES

3.- Application

ADJUSTING THE PRICING MODEL TO RAIL SERVICES

• SUBURBAN TRAINS

General features: distance \approx 50 Km; speed \leq 100 Km/h

- Conventional lines
- Lines around major cities
- High frequency (peak hours)
- High operating costs
- "Social prices"
- Operate at a deficit
- Contribute significantly to quality of life in cities

ADJUSTING THE PRICING MODEL TO RAIL SERVICES

- REGIONAL TRAINS
 Distance 50-250 Km;
 speed ≤ 120 Km/h
 - Operate on uncongested lines (except in access to major cities)
 - Serve less densely populated areas
 - Low frequency
 - Un-modernized lines and rolling stock
 - Strong competition from private automobiles
 - "Social prices" to ensure accessibility
 - Operate at a deficit
 - Sustainable transportation

ADJUSTING THE PRICING MODEL TO RAIL SERVICES

•LONG-DISTANCE TRAINS Distance \geq 250 Km;

speed \leq 160 Km/h

- Operate on conventional lines (modernized)
- Link important cities (high demand)
- Have priority for slots
- Quality service
- Compete with road transportation
- No "Social prices"
- Profitable transportation services
- Sustainable transportation

ADJUSTING THE PRICING MODEL TO RAIL SERVICES

HIGH-SPEED TRAINS
Distance ≥ 250 Km;
speed ≥ 200 Km/h

- High-speed lines
- Link important cities (high demand)
- Have priority for slots (on conventional lines)
- High quality service
- Compete with road and air transportation
- No "Social prices"
- Profitable transportation services
- Sustainable transportation

AVE

ADJUSTING THE PRICING MODEL TO RAIL SERVICES

• FREIGHT TRAINS

Distance \geq 200 Km;

- speed \leq 100 Km/h
 - Conventional lines
 - Link major production and consumer centers
 - Lack of priority
 - Interoperability and market access problems
 - Strong competition from road haulage
 - Sustainable transportation
 - If over charging:
 - Increased external costs
 - Decreased international rail transportation

RAIL SERVICE Freight CHARGE Freight Contribution Capacity Running 10% Traffic control Auxiliary Services and other Facilities External costs

4.- Conclusions

COST ALLOCATION AND FUNDING OF THE PRICING SYSTEM

RAIL SERVICE CHARGE	Suburban		Regional		Long distance		High speed		Freight	
Contribution					▲		25%		▲	
Capacity										
Running	10%		10%						10%	
Traffic control										
Auxiliary Services and other Facilities										
External costs										

Black boxes: Charge fully paid by operators

Gray boxes: Charge partially paid by operators (compensated by the External Costs Charge) Orange boxes: Savings in external costs

White boxes: Charge financed by the External Costs Charge (savings) and government subsidy Arrows: funding transfers.

4.- Conclusions

COST ALLOCATION AND FUNDING OF THE PRICING SYSTEM

	Passe	engers	Freight		
SPAIN: External Costs	Road	Railroad	Road	Railroad	
External Cost (€/1000 p-km; €/1000 TK)	50	18	92	18	
Anual demand met by railroad (millions)	19.017	19.017	11.927	11.927	
External Costs (million €)	947	335	1.093	212	
Diference (millions €)		-612		-880	
Saving in External Costs (millions €)				1.493	

p-km: passenger-km; TK: net ton-km. Source: INFRAS/IWW (2004) and RENFE (2004)

SPAIN: Anual Investment in Rail. Infras. (construction, improvements and maintenance, millions €)

GIF (Infrastructure Manager)	2.312
Dirección General Ferrocarriles (Railroads Department)	562
RENFE (Spanish national railroad company)	678
TOTAL	3.552
% Saving in External Costs/Investment	42

Source: Spanish Ministry of Development (2004)

Transportation Research Board Washington, January 2007

THANK YOU VERY MUCH FOR YOUR ATTENTION

Francisco Calvo (fjcalvo@ugr.es) Juan de Oña (jdona@ugr.es) Andrew Nash (andy@andynash.com)