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ABSTRACT1

Today many European railway networks are operating near capacity. Developing timetables for these dense and2

often highly congested networks is becoming increasingly difficult. Several algorithmic approaches for solving3

timetabling problems have been developed in recent years, but the problem size, computational complexity and4

lack of transparent interfaces for planners slow down adoption of these approaches in practice. This research5

proposes an iterative method based on train hierarchies to solve large periodic timetabling problems. The pro-6

posed method adds a new group of trains to the schedule in eachstep of the process while holding trains added7

in previous steps fixed within a specified time interval. Using a case study with real-world data, the influence of8

the number of decomposition steps and time interval on computation time and timetable quality is analyzed. The9

results show that setting parameters to a compromise between the extremes of a purely sequential or a purely10

simultaneous timetable planning approach is very effective at reducing computation time while still providing11

optimal or close to optimal timetables.12
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1 INTRODUCTION1

Railway networks are increasingly important for providingtransportation services for goods and passengers.2

Sustainable and cost-efficient railway transport benefits society, economy and environment. Recent growth in3

railway traffic has strained network capacity, and constructing new railway infrastructure is expensive and dis-4

ruptive. Together this means that the current railway capacity be used as efficiently as possible.5

Over the last two decades railway scheduling has been intensively studied in the academic world and6

many models and algorithms have been developed. These new tools help to increase the efficiency of railway7

operations and planning. Especially important are algorithms supporting timetable and infrastructure planning.8

Using these algorithms in computer-supported timetable planning allows planners to compare different timetable9

concepts and infrastructure extensions more quickly than when this work was done by hand. However, the10

inherent complexity of timetable design continues to limittheir computational practicability to problems of11

moderate size. In particular, the automatic generation of acomplete timetable for an entire network remains a12

challenge.13

There are two basic approaches for timetable construction:sequential and synchronous planning. Se-14

quential timetable planning means planning a single train,considering that train path fixed, and then planning15

the next train. In contrast, synchronous planning means that all the train paths are planned simultaneously in16

a single step. Given human cognitive limits, manually constructed timetables are often planned using the se-17

quential approach, train by train. In this approach, planners look for possible additional slots in a partially fixed18

timetable. Several software tools have been developed to automate this process and are currently used to help19

plan timetables [6, 7]. This approach of fixing train paths sequentially is also used in so-called asynchronous20

railway simulation frameworks.21

Several automated synchronous timetable planning algorithms have also been developed [9], [10], [17].22

They have the advantage of considering a timetabling problem as one mathematical problem and therefore23

do not lose potential (including optimal) solutions through early, maybe disadvantageous, train path fixations.24

Unfortunately, high computation times for large instancesstill hinder the integration of synchronous planning25

algorithms into planning software used in practice.26

The benefit of sequential timetable planning is a significantreduction in computing time compared to27

synchronous timetable planning. But, since trains are scheduled one-by-one and schedules of previously planned28

trains are held fixed, many possible combinations of different train paths – and therefore potential solutions –29

are overlooked. Furthermore, the algorithms may not even beable to find an existing solution. On the other30

hand, synchronous timetable planning is difficult for complex networks with many train operations. It would be31

ideal to have an approach that combines the benefits of both sequential and synchronous planning.32

In this paper, we develop an approach to timetable planning that combines sequential and simultaneous33

planning for a special type of schedule: the periodic timetable. This multi-step approach, called hierarchical de-34

composition, reduces complexity by sequentially planningtimetables for groups of trains rather than individual35

trains and increases quality by allowing previously planned train schedule times to vary somewhat as the next36

group of trains is planned.37

38
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The first step in this approach consists of dividing train services into groups (often based on service1

quality, for example stopping patterns and speed). The groups often reflect railway priority (e.g. high priority2

train groups are planned before lower priority groups).3

Next a timetable for trains in the first group is planned usingsynchronous methods. The paths for these4

trains are fixed within a given time window around the timetable computed by the synchronous model, and5

then a timetable for the next set of trains is sought. As the timetable for this next set of trains is computed, the6

previously planned train paths can be moved within the time window to increase the ability to create good paths7

for the next set of trains. The process is repeated until all the groups have been planned (or it is impossible to8

add another train to the schedule).9

The method was developed by adding a scaling parameter to a formal generic hierarchical timetabling10

scheme. The scaling parameter allows users to adjust the level of simultaneousness. This scaling parameter is11

the time window within which train paths can vary and essentially specifies the degree of freedom given to12

adjusting previously planned train paths when planning lower-priority trains. Using a case study for planning a13

periodic timetable for a part of the Swiss railway network, we investigate how the time window parameter and14

the number of train groups influences computation time and solution quality.15

The next section provides more background on periodic timetables and the Periodic Event Scheduling16

Problem (PESP) model for computing periodic timetable schedules. Section 3 describes solution methods for17

the PESP. Section 4 describes the generic hierarchical timetabling scheme developed, and Section 5 investigates18

how the time window parameter impacts schedule quality using this scheme for different priority groups. Finally,19

Section 6 presents conclusions and recommendations for further research.20

2 THE PESP MODEL21

This research focuses only on periodic timetables. In a periodic timetable the pattern of trains repeats after each22

period. This type of timetable is easier for customers to remember and also reduces the complexity of schedule23

planning [8]. Instead of performing computations for a whole day, the main planning process is reduced to24

planning only one representative hour (or period). This onehour, repeated consecutively over a whole day,25

serves as a basic concept for the daily timetable. Small adaptions such as removing a train service in off-peak26

hours and adding individual runs for freight trains are handled after the rolling out of this basic hour.27

Periodic timetables have been used in the Netherlands, Switzerland and German for many years and are28

gradually being introduced in other European railways. Switzerland’s comprehensive introduction of periodic29

timetabling beginning in 1982 has been one of the main factors behind the country’s strong passenger growth.30

The systematization of periodic timetabling has led to the introduction of integrated, fixed interval nodes for31

major stations of Switzerland’s railway network. This means that trains arrive at stations just before the hour32

(or half-hour) and depart just after the hour, giving passengers easy connections between all lines. Switzerland’s33

success is a good example, and many other European countriesare starting to systematize their national pas-34

senger railway services as well. Given this trend, we develop our approach for periodic timetables. Using the35

concept of partial periodic PESP [4] it is possible to adapt the same ideas to non-periodic timetabling problems.36
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The periodic event scheduling problem (PESP) has been shownto be a useful model for cyclic timetable1

planning several times in practice and is therefore also used in this research. The PESP as a general scheduling2

framework was introduced by Serafini and Ukovich in 1989 [20]and was used to model train timetables by3

Shrijver and Steenback [19] for the first time five years later. The PESP allows users to plan a set of specified4

train lines with desired functional requirements and restrictions given by the infrastructure. The next sections5

describe the data needed to construct a PESP model and then explain how this information is represented in the6

model.7

Necessary Data to Construct a PESP Model8

Macroscopic Topology9

The first step in developing a PESP model for railway timetable planning is to define the level of detail for10

the (macroscopic) infrastructure model by specifying a setof stations, line junctions and crossing points. The11

elements of this set constitute thenodesof the macroscopic infrastructure. A node is needed for eachstation12

where (i) train sequences are allowed to change, (ii) train lines end, or (iii) we want to offer connections for13

passengers. Additional nodes must be placed at important line junctions outside of stations, where trains can14

change tracks (e.g., to overtake), or where the number of parallel tracks changes. It is possible to vary the level15

of detail in the macroscopic topography depending on how accurately junctions and other infrastructure are16

modelled. The nodes of the macroscopic topology are connected byedgesthat represent the tracks connecting17

two consecutive nodes. Normally station capacities and track topologies inside a station are not included in this18

macroscopic topology. They are considered in a consecutive, more detailed and computational step performed19

locally [22, 3]. This two-level approach has been successfully applied several times [18], [2], [14], [21]. In this20

paper concentrate on the first (macroscopic) part of this two-level approach.21

Trains22

Once the macroscopic topology has been defined it is possibleto define the train services. For every train23

service we want to schedule, we have to fix a path through the macroscopic topology and define conditions on24

the corresponding train’s driving behavior. A sequence of macroscopic nodes defines the route from the starting25

station to the final station. For every edge on this path we have to fix the track used by each train as well as a26

lower and upper time limit the train needs to move over the corresponding track. Similarly, it is also necessary27

to define a time interval specifying bounds for the dwell times at nodes where trains stop. In this case bounds28

are set to provide a minimal time for passengers to board and alight, and a maximum reasonable time this train29

can wait in the station. If a node just stands for a junction ora station where the train does not stop the lower30

and upper dwell time bounds can be set to zero. It is also possible to define turnaround time conditions for every31

train at its final station as well as time restrictions on the minimal and maximal total driving time over a longer32

path through the network. To refer to a train service, we use anumbertl ∈ Z called train service number.33

Simplified Safety System34

In addition to defining the topology and the train services, it is necessary to define a simplified version of the35

safety system in the model to prevent train overtakings and crossings. This is done by introducing headway36

constraints between every pair of train using the same track. These headway constraints can be train and track37

specific.38
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Additional Functional Requirements1

In addition to the macroscopic infrastructure constraints, there are some further options to describe functional2

requirements for the set of train services being modeled. For example, it is possible to specify lower and upper3

bounds for connections between two trains in a station to achieve travel time targets for passengers making4

connections between the trains. It is also possible to create a passenger friendly distribution of trains serving the5

same route using frequency constraints, and it is of course possible to constrain any train departure and arrival6

time to a desired time interval.7

The Period Length8

Before starting to construct a periodic timetable, it is necessary to fix the period length, which is denotedT.9

Often the period is 60 minutes (T = 60) or 3600 seconds (T = 3600), if planning must be done with a finer10

time discretization. It is also possible to choose a time period smaller or larger than one hour. The important11

characteristic is that a constructed timetable can be repeated without conflict between two periods. These criteria12

must be part of the PESP model.13

Formulating the PESP Model14

Once the data has been defined it is possible to formulate a mathematical model to solve a macroscopic periodic15

timetabling problem satisfying all the infrastructure restrictions and functional requirements. The aim of this16

timetabling problem is to find feasible departure and arrival times for every train at every node of its route17

through the macroscopic infrastructure. These departure and arrival times are called theeventsof the periodic18

event scheduling problem and constitute the setV.19

More formally, a macroscopic timetable is a functionπ : V → [0,T) uniquely assigning a timeπ(vi) =:20

πi ∈ [0,T) to every eventvi ∈ V in our model. Thus, for every departure and arrival eventvi we introduce21

a variableπi which can be considered the decision variable for the problem of identifying the departure and22

arrival times being sought in the model.23

Each condition on the desired timetable mentioned in Table 1can be described as a constraint between24

two event timesπi andπ j as a minimal and maximal time which has to pass between the twocorresponding25

eventsvi andv j . We thus introduce a PESP constraint between two event timesπi andπ j as a constraintai j ∈ A26

with three parameters:ai j = (l i j ,ui j , typei j ), wherel i j ≤ ui j describe the lower and upper bound for the diffe-27

rence between the two event timesπi andπ j andtypei j ∈ {cTrip,cDwell,cHead,cFreq,cConn,cSlot,cDep}28

describes the type of constraint explained in Table 1. We distinguish between these different types of constraints29

to have a better overview for modeling. From a mathematical point of view they do not differ. A constraintai j30

is satisfied if and only if31

l i j ≤ (π j −πi) modT ≤ ui j , (1)

where the modulo operator is important to express the periodicity requirement.32
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TABLE 1: Summary of the Different Constraint Types

cTrip For every train, constraints of typecTrip are given between every departure event and the
subsequent arrival event modeling the minimal and maximal driving time this train needs
for the corresponding distance.

cDwell Every trip constraint, except the last one to the final station, is followed by a dwell constraint
between the arrival and departure event of a train in the samestation (node) specifying
bounds for the dwell time at this node.

cHead With constraints of typecHead, a simplified safety system is modeled. For every pair of
trains using the same track, a headway constraint is introduced which ensures that the time
passing between the corresponding arrival and departure atthe beginning and the end of this
track are separated by at least the headway timeh. Since the order of trains is normally not
determined at this point, a constraint with lower boundh and upper boundT −h is used for
every pair of train using the same track.

cFreq If there are trains with a smaller periodTF ,F > 1,F ∈ N thanT, this train has to be modeled
F times and frequency constraints fixing an exact distance between every departure event
of these trains at each station have to be added.

cConn To model a desired connection, a constraint between the arrival event of the first train and
the departure event of the second train in the correspondingstation requiring the allowed
transfer time is added.

cSlot To fix a certain time event in a desired interval, an additional node, called “zero vertex”,
is introduced. The zero event will take place at the time 0 independently of every train, so
constraints between this zero vertex and the desired event are added to constraint its time.

cDep To separate two trains serving a similar offer by at leastl i j time units and at mostui j time
units, constraints of typecDepare used.

cOverall Constraints of typecOverall are used to fix minimal and maximal total travel times for a
train from its first station to the end destination. This can be used to set required buffer
times.

A PESP model can be visualized as a directed graph (Figure 1).The top part of the figure shows four1

train pairs running between Luzern and Ebikon during the specified period (one suburban train, two regional2

express trains and one intercity train). The middle part of the diagram shows the simplified topography and the3

bottom part shows how the schedule and topography is represented in the PESP model.4
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FIGURE 1: Example of a PESP graph for the route Luzern to Ebikon with a change from a single track
line to a double track line in Rotsee and four trains running in both directions.

Every eventvi ∈V defines a vertex and every constraintai j ∈ A a directed edge from vertexvi to vertex1

v j . To every edgeai j we assign a closed interval describing the time which shouldpass between the time of2

eventvi and the time of eventv j .3

3 SOLUTION METHODS4

The PESP is proven to be a very hard problem (NP-hard, [20]). This means that in the worst case, compu-5

tation times grow exponentially with the problem size (unlessP = NP,[5]). Nevertheless, the development of6

algorithms to solve the PESP has been progressing for several years.7

There are two main methods for solving a PESP model: constraint programming and mixed-integer8

programming [13]. The first method, constraint programming, together with the PESP model is core element9

of the Dutch railway schedule planning software DONS (Design of Networks Schedules) [9] and is also used10

for TAKT, a German program system [15]. The second method, mixed-integer programming, has been used in11

practice for smaller projects, for example a new timetable construction for the underground metro train system12

of Berlin [11] but has not yet been used on a large scale timetable planning project.13

In the mixed-integer programming approach, integer and continuous variables are used to describe the14

PESP model in a system of linear inequalities, which is completed by an objective function for optimization.15

These models can then be solved by branch-and-cut methods [1] implemented in state-of-the-art commercial16

solvers. Using continuous time variables, direct optimization capability and the possibility of adding further17

constraints not directly modeled in the PESP graph this solution method has a number of advantages over18

constraint programming and is therefore used in this research.19
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The straightforward mixed-integer linear programming formulation, called “Classical MILP formulati-1

on” uses two types of decision variables: continuous variables πi for every event time and integer variablesq j2

for every constrainta j ∈ A to model the periodicity. Every departure or arrival timeπi of the desired periodic3

timetable must have a value between 0 and the total time period T (0≤ πi < T, ∀vi ∈V). Moreover, these event4

times have to satisfy every condition of the PESP model, which we can formulate directly as in the PESP mo-5

del. The only difference to equation (1) is the replacement of the modulo operator modT by pa ·T, allowing6

addition of an arbitrary integer multiple of the time periodT to ensure periodicity.7

Several possible objective functions for this problem havealready been examined including the minimi-8

zation of total travel time, maximizing a specific timetablerobustness measure, or minimizing rolling stock [2].9

As described in Section 5 this research used minimization oftotal travel time as an objective function, summing10

up the activity durations associated with each trip, dwell and connection constraint. The classical MILP can11

therefore be stated as follows:12

Minimize fob j(π)

subject to la ≤ πi −π j + paT ≤ ua ∀a∈ A

0≤ πi < T ∀vi ∈V

pa ∈ Z ∀a∈ A

Besides the classical MILP formulation, which directly follows from constraints of the PESP model,13

there exists a second formulation called cyclic MILP formulation [16, 10]. The cyclic formulation turned out to14

be more efficient for several test cases [10].15

Instead of directly considering all time eventsπi as decision variables, time differences between every16

pair of event times connected over a PESP constraint are used. These new variablesxa := πi −π j for every PESP17

constraintai j ∈A are called tension variables in analogy to electrical networks. To satisfy every PESP constraint,18

each tension variablexa has to lie between its corresponding edge bounds (la ≤ xa ≤ ua). In addition to these19

continuous tension variables, integer variables are againnecessary to require a periodic timetable. Similar to an20

electric circuit, the directed sum over all tension variables along a cycle in the PESP graph, modulo the total21

time, has to be zero. Thus, for every cycleC in the PESP graph,∑a∈C+ xa −∑a∈C− xa = TqC, whereC+ and22

C− denote the set of every positively oriented and negatively oriented edge along cycleC, andqC is an integer23

variable called cycle periodicity variable for cycleC.24

Minimize fob j(x)

subject to la ≤ xa ≤ ua ∀a∈ A

∑
a∈C+

xa− ∑
a∈C−

xa = TqC ∀C∈ CB

xa ∈ R
+ ∀a∈ A

qC ∈ Z ∀C∈ CB
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Since there are exponentially many cycles in a general graph, it would be necessary to introduce the1

same number of additional constraints and integer variables. However, it has been shown that it is sufficient2

to require this cycle constraint for every cycle out of an integer cycle basesCB of the PESP graph (a much3

smaller subset than the set of every cycle) [12] to ensure that every cycle satisfies the cycle constraint. For4

a general graph there exist a huge set of possible integer cycle bases. Fortunately, they do not influence the5

result of our timetable construction, but they have a significant impact on computation time. The choice of a6

best cycle basis to this problem is still an unresolved research question. Empirically it has been shown that7

an integral cycle basis constructed out of a minimum spanning tree (with respect to the edge spans as weight)8

leads to good performance and therefore this approach is also used in this research. The objective function can9

be translated from the classical MILP formulation. To simplify notation it will from here on be referred to as10

PESP(V,A,CB, fob j(x)).11

4 HIERARCHICAL DECOMPOSITION METHOD12

Motivated by planning practice and manual timetable construction, our goal is to study the influence of hierar-13

chical train prioritization in timetable construction viathe periodic event scheduling problem. We define priority14

classes by dividing the whole set of train services (trips) into p> 1 disjoint groups. In every iteration, one group15

of train services is added to the scheduling problem while constraining previously scheduled train runs to a cer-16

tain time interval of sizetw around their scheduled time from the previous iteration. Different variations of train17

service partitions and interval sizestw were tested to reveal dependencies between these two parameters, com-18

putation time, and the quality of the obtained timetables. This section defines the hierarchical decomposition19

method in more detail and specifies the algorithm. The results will be analyzed in Section 5.20

Let Tl be the set of all train service numbers contained in a considered PESP model with event setV21

and constraint setA. To partitionTl into p different groups for prioritization, we define a functionprio : Tl →22

{1, . . . , p} assigning a priority valueprio(tl ) to every train service numbertl ∈ Tl .23

In the first iteration, only train services of priority 1, i.e., the setprio−1(1), are scheduled. Since a24

reduced set of trains is being considered only the events andconstraints corresponding to these trains need25

to be considered. LetV1 be this reduced set of events, containing all events corresponding to train services26

of prio−1(1), plus the zero time event. The reduced constraint setA1 then is defined as the set of constraints27

contained inA whose end nodes both belong toV1 (edges of the induced subgraph overV1).28

To compute a first partial timetable, it is necessary to solvePESP(V1,A1,CB|A1, fob j(x)|A1), whereCB29

and fob j(x) are the standard cycle basis, and the objective function is minimization of total travel time (as30

specified in the previous section), reduced to the smaller domain of tension variables corresponding toA1.31

Let Π(1) be the set of all event timesπ(1)
k in the solution of this first reduced problem. To fix this result32

within a time interval of sizetw around this solution, new slot constraints are introduced for every time event33

vk ∈V1 as34

slot(1)
k : a(1)

0k = (π(1)
k −

tw
2

,π(1)
k +

tw
2

,slot)
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and all slot constraints are collected inA(1)
f ix. If the first partial timetable problem has no solution, the entire1

timetabling problem is infeasible.2

In every further iterationi, 1 < i ≤ p, the previous event setVi−1 is enlarged by adding all events3

corresponding to train services of theith priority group prio−1(i) and defineAi again by the set of cons-4

traints ofA with both end nodes inVi . We add the slot constraintsA(i−1)
f ix to the current constraints and solve5

PESP(Vi,Ai ∪A(i−1)
f ix ,CB|Ai∪A(i−1)

f ix
, fob j(x)|Ai ). As in the first iteration, after computing a partial timetable, a new6

set of slot constraints for every time eventvk ∈Vi , denoted byA(i)
f ix, is constructed in every further iteration. If a7

partialPESPis infeasible, we stop the iteration. In Figure 2 a flow chart diagram summarizes this steps for one8

fixed time intervaltw.9

10
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FIGURE 2: Flow chart for one hierarchical iteration for a fixe d parameter tw and a given set of prioriza-
tion groups.

The main control parameter of the algorithm is the interval length tw, which controls the degree of11

freedom of higher priority trains when scheduling the lowerpriority trains. The parameter can vary from a12

complete fixation (tw = 0) to complete freedom (tw = T). In the latter case, the hierarchical decomposition13

problem equals the original complete PESP problem.14

Enlarging parametertw starting from zero up totw = T, we therefore obtain a transition from a strictly15

sequential planning scheme as one extreme to a fully simultaneous planning as in the standard PESP. Selecting16

a suitabletw value is crucial for the algorithm running time and the solution quality. In particular, a too smalltw17

might create infeasibilities during the iterations even ifthe original simultaneous PESP is feasible. Thus, in case18

of infeasiblity, a simple remedy would be to restart the algorithm with a largertw.19
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5 COMPUTATIONAL RESULTS1

The decomposition method described above was tested using atimetabling problem from central Switzerland2

containing the three cities Luzern, Zug, and Arth-Goldau, reaching up to the main corridor Olten-Lenzburg in3

midland and to lake of Zurich containing Pfäffikon SZ and Thalwil.4

5
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FIGURE 3: Line map of the model

The data used to build this model were taken from the timetabling software used at the Swiss Federal6

Railways (SBB). Out of over 7500 passenger trains running every day on Switzerland’s railway network, all7

periodic train services using the infrastructure of the case study region were extracted. Driving paths, minimal8

trip and dwell times as well as all commercial stops are read from the data set. Fixing of upper bounds for9

the dwell times is a crucial point to allow train crossings and overtakings. In our model crossings are allowed10

and automatically determined by the algorithm in all stations where crossings are allowed in today’s timetable.11

Signal headways are directly extracted from the data for alldistances and train types. They range from 1.7512

minutes for very frequently used infrastructure elements up to 6 minutes for sparsely used tracks. Altogether13

the case study region contains 159 stations and 113 periodictrains per hour. Out of these 159 stations 68 had14

to be included in the macroscopic topology because of varying track numbers and signal headways, as well as15

crossing points and ending train services.16
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FIGURE 4: Macroscopic topology of the model

The resulting PESP model contains 1483 events and 6214 constraints. There are 23 connection cons-1

traints modeling high priority connections between trainsof the chosen model. Furthermore, functional require-2

ments such as time distances between trains with similar commercial offers are automatically taken from today’s3

timetable and are included in the model via 108 frequency andseparation constraints. Using overall constraints,4

a minimal buffer time of 7 percent is required for all train trips. The objective function minimizes the total travel5

time (sum of all used trip, dwell and connection times) of alltrains passing the considered region and has its6

optimum at 3109 minutes.7

The remainder of this section describes the computational results for the example and discusses in par-8

ticular the influence of the two decomposition parametersprio andtw. All computations were performed using a9

compute server with 2x2 Intel X5650 CPUs each with six cores and the MIP solver of IBM ILOG CPLEX∗ Op-10

timizer (Version 12.4) with an optimality gap of 0.5%. The evaluation tested every even value for the parameter11

tw (train fixation interval), starting from a complete fixation(tw = 0) up to a weaker fixation of +/- 16 minutes12

(tw = 32). The allocation of prioritization groups for the hierarchical decomposition is illustrated in Figure 5. As13

a first priority group all fast trains are taken. Then all regional passenger trains are automatically distributed in14

a predefined number of groups corresponding their geographical position in the model. The number of groups15

(p) varies from three groups up to seven and is part of our analysis regarding computation time and quality.16

17
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The hierarchical iteration as described in Section 4 and illustrated in Figure 2 is done for every even1

fixation value fromtw = 0 to tw = 32 and for every groups sizep = 3 to p = 7. Figure 6 gives an overview on2

the results. The first graphic of Figure 6 shows dependenciesof the size of fixation intervaltw and computation3

time. As expected, a very strong sequential planning (smalltw) has much faster computation times than more4

synchronous plannings with interval sizes of half an hour. The computation time does not grow monotonously5

since enlarging the fixation interval allows the model to findnew timetable variants from one group to the next,6

which in some cases can accelerate the solution processes. Amore fascinating result is the influence of the num-7

ber of prioritization groups. Although there are more MIPs to solve for a larger number of groups, the solution8

process is faster forp = 5,6,7 than forp = 3,4.9

10
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FIGURE 5: Example for the allocation of prioritization grou ps for p = 7.

Comparing these computation times of the first graphic with the corresponding objective values in the11

second graphic, the results show the problem of complete sequential planning. For very small fixation intervals12

tw the algorithm ended in infeasiblity. It was not possible to add all prioritization groups without moving train13

departure and arrival times of already included trains. In the case ofp = 3 a first feasible timetable could be14

found for a fixation interval of sizetw = 4 with total travel time (objective value) of 3168 minutes. Enlarging15

the number of prioritization groups the first occurrence of afeasible time table moves more and more to larger16

fixation intervals. Up from an interval size of 18 minutes also the last computation series found a feasible time-17

table. Observing the trend of objective values comparing tothe fixation interval size (tw) the solution quality of18

our timetables, measured with total travel time, grows for larger values oftw. Interesting here are also the good19

results forp = 6 andp = 7 starting from the first occurrence of a feasible timetable.Up from a fixation interval20

of size 15 minutes, all objective values stay at a certain level of quality not exceeding 0.5 percent of the optimal21

total travel time.22
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1

FIGURE 6: Computation times and objective values refining the prioritization function from p = 3 up
to p = 7

For a better comparison of our new solution method for the PESP model to the complete synchronous2

solution process we defined a straightforward method stringing together all computations for one prioritization3

group starting withtw = 0 and enlargingtw until a solution satisfying our expectations was found. Theresult is4

shown in Figure 7 and shows clear advantages to the complete synchronous solution process. All hierarchical5

decomposition methods for all prioritization groups fromp = 3 to p = 7 find a first feasible timetable in less6

than 10 minutes, while the original, completely synchronous method finds a first feasible solution only after 397

minutes. Furthermore, the optimization process was much faster in all hierarchical decomposition methods than8

in the complete synchronous method. After three hours computation time, the original method still hasn’t rea-9

ched a total travel time comparable to the hierarchical decomposition methods. Again, the prioritization groups10

for p = 5,6,7 show better results than using only three prioritization groups.11
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1

FIGURE 7: Comparison of the new hierarchical decompositionmethod to the original synchronous op-
timization process.

To find a good number and adequate choice of prioritization groups it is worth considering the different2

computation times for all MIP during one iteration. If thereis one MIP having a remarkably higher computation3

time over different sizes of fixation intervals then the whole decomposition method can be improved by further4

partitioning the corresponding prioritization group. On the other hand, if there is one MIP, especially the first5

one, with a very short computation time it can be beneficial toadd some further trains to this prioritization6

group. The first prioritization group often can include manymore trains than the remaining groups.7

8

6 CONCLUSION9

This paper introduces a hierarchical decomposition methodto solve instances of the periodic event scheduling10

problem (PESP) via its mixed integer linear programs (MILP)formulation. Train services are partitioned into11

different priority groups and introduced into the scheduling problem step by step, where solutions of previous12

steps are only fixed within a specified time interval. The introduction of these two parameters (number of prio-13

ritization groups and time interval) allows a continuous transition from fully sequential timetable construction14

up to a fully simultaneous planning of the whole problem (i.e. the original MILP solution approach). Therefore15

the discovery of a feasible timetable, if there one exists, is ensured.16

The method was tested on a model describing a time tabling situation over 159 stations in central17

Switzerland and shows promising results. Using the hierarchical decomposition method as a heuristic method18

to solve the PESP can improve computation times while optaining optimal or close to optimal schedules. For19

all considered sizes of priority groups the new method foundfirst feasible solutions faster and showed a faster20

optimization process than the corresponding complete synchronous solution process.21
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The results of this paper also show that strong sequential timetable construction, without backward1

iterations, can quickly end with infeasible subproblems, as soon as there is no large capacity surplus. Using an2

intermediate time fixation interval size of about 10 to 30 minutes seems a suitable and robust choice, and the3

resulting computation times and solution quality are remarkably good.4

Decomposition in general plays an important role in improving algorithms for timetabling. Interesting5

areas for future research include further examinations of the proposed train hierarchical decomposition methods6

for national problem instances. Another is to consider moredeeply the relationship between its parameter set-7

tings and the corresponding mixed-integer linear program.8

9

∗ IBM, ILOG, and CPLEX are trademarks of International Business Machines Corporation, registered in many jurisdictions10

worldwide. Other product and service names might be trademarks of IBM or other companies.11
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