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ABSTRACT

Today many European railway networks are operating neaciigpDeveloping timetables for these dense and
often highly congested networks is becoming increasingficdlt. Several algorithmic approaches for solving
timetabling problems have been developed in recent yeatrshé problem size, computational complexity and
lack of transparent interfaces for planners slow down adopif these approaches in practice. This research
proposes an iterative method based on train hierarchieste krge periodic timetabling problems. The pro-
posed method adds a new group of trains to the schedule insegelof the process while holding trains added
in previous steps fixed within a specified time interval. dsancase study with real-world data, the influence of
the number of decomposition steps and time interval on ceaipn time and timetable quality is analyzed. The
results show that setting parameters to a compromise bettheeextremes of a purely sequential or a purely
simultaneous timetable planning approach is very effedcivreducing computation time while still providing
optimal or close to optimal timetables.
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1 INTRODUCTION

Railway networks are increasingly important for providimgnsportation services for goods and passengers.
Sustainable and cost-efficient railway transport beneditsesy, economy and environment. Recent growth in
railway traffic has strained network capacity, and consimgcnew railway infrastructure is expensive and dis-
ruptive. Together this means that the current railway cépae used as efficiently as possible.

Over the last two decades railway scheduling has been iménstudied in the academic world and
many models and algorithms have been developed. These p&nhigp to increase the efficiency of railway
operations and planning. Especially important are algorit supporting timetable and infrastructure planning.
Using these algorithms in computer-supported timetalglarphg allows planners to compare different timetable
concepts and infrastructure extensions more quickly thhanwthis work was done by hand. However, the
inherent complexity of timetable design continues to lithiéir computational practicability to problems of
moderate size. In particular, the automatic generationadraplete timetable for an entire network remains a
challenge.

There are two basic approaches for timetable construcsiequential and synchronous planning. Se-
guential timetable planning means planning a single ti@ngsidering that train path fixed, and then planning
the next train. In contrast, synchronous planning meartsath#éhe train paths are planned simultaneously in
a single step. Given human cognitive limits, manually carcted timetables are often planned using the se-
guential approach, train by train. In this approach, plasiteok for possible additional slots in a partially fixed
timetable. Several software tools have been developedttonate this process and are currently used to help
plan timetables [6, 7]. This approach of fixing train pathgusmntially is also used in so-called asynchronous
railway simulation frameworks.

Several automated synchronous timetable planning atgosithave also been developed [9], [10], [17].
They have the advantage of considering a timetabling pnolde one mathematical problem and therefore
do not lose potential (including optimal) solutions througarly, maybe disadvantageous, train path fixations.
Unfortunately, high computation times for large instansgi hinder the integration of synchronous planning
algorithms into planning software used in practice.

The benefit of sequential timetable planning is a significadtiction in computing time compared to
synchronous timetable planning. But, since trains aredidbd one-by-one and schedules of previously planned
trains are held fixed, many possible combinations of diffeteain paths — and therefore potential solutions —
are overlooked. Furthermore, the algorithms may not eveahle to find an existing solution. On the other
hand, synchronous timetable planning is difficult for coexphetworks with many train operations. It would be
ideal to have an approach that combines the benefits of bgtlesgal and synchronous planning.

In this paper, we develop an approach to timetable planmiagdombines sequential and simultaneous
planning for a special type of schedule: the periodic tirletal his multi-step approach, called hierarchical de-
composition, reduces complexity by sequentially plannimgtables for groups of trains rather than individual
trains and increases quality by allowing previously plahtrain schedule times to vary somewhat as the next
group of trains is planned.
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The first step in this approach consists of dividing trainvieess into groups (often based on service
quality, for example stopping patterns and speed). Thepgradten reflect railway priority (e.g. high priority
train groups are planned before lower priority groups).

Next a timetable for trains in the first group is planned usiygchronous methods. The paths for these
trains are fixed within a given time window around the timé&atomputed by the synchronous model, and
then a timetable for the next set of trains is sought. As tinetéble for this next set of trains is computed, the
previously planned train paths can be moved within the tirmelaw to increase the ability to create good paths
for the next set of trains. The process is repeated untihallgroups have been planned (or it is impossible to
add another train to the schedule).

The method was developed by adding a scaling parameter tonalfgeneric hierarchical timetabling
scheme. The scaling parameter allows users to adjust tekdégimultaneousness. This scaling parameter is
the time window within which train paths can vary and essdigtispecifies the degree of freedom given to
adjusting previously planned train paths when planningelepriority trains. Using a case study for planning a
periodic timetable for a part of the Swiss railway networlg mwvestigate how the time window parameter and
the number of train groups influences computation time ahdien quality.

The next section provides more background on periodic &bies and the Periodic Event Scheduling
Problem (PESP) model for computing periodic timetable dales. Section 3 describes solution methods for
the PESP. Section 4 describes the generic hierarchicalainireg scheme developed, and Section 5 investigates
how the time window parameter impacts schedule qualityguiis scheme for different priority groups. Finally,
Section 6 presents conclusions and recommendations tbefuiesearch.

2 THE PESP MODEL

This research focuses only on periodic timetables. In agertimetable the pattern of trains repeats after each
period. This type of timetable is easier for customers toamimer and also reduces the complexity of schedule
planning [8]. Instead of performing computations for a vehdhy, the main planning process is reduced to
planning only one representative hour (or period). This baer, repeated consecutively over a whole day,

serves as a basic concept for the daily timetable. Smalltimapsuch as removing a train service in off-peak

hours and adding individual runs for freight trains are heddafter the rolling out of this basic hour.

Periodic timetables have been used in the Netherlandsz&veihd and German for many years and are
gradually being introduced in other European railways.t&viand’'s comprehensive introduction of periodic
timetabling beginning in 1982 has been one of the main fadiehind the country’s strong passenger growth.
The systematization of periodic timetabling has led to titeoduction of integrated, fixed interval nodes for
major stations of Switzerland’s railway network. This mednat trains arrive at stations just before the hour
(or half-hour) and depart just after the hour, giving pagses easy connections between all lines. Switzerland’s
success is a good example, and many other European cousniestarting to systematize their national pas-
senger railway services as well. Given this trend, we develar approach for periodic timetables. Using the
concept of partial periodic PESP [4] it is possible to adhptdame ideas to non-periodic timetabling problems.
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The periodic event scheduling problem (PESP) has been studvena useful model for cyclic timetable
planning several times in practice and is therefore alsd ursthis research. The PESP as a general scheduling
framework was introduced by Serafini and Ukovich in 1989 [0 was used to model train timetables by
Shrijver and Steenback [19] for the first time five years latée PESP allows users to plan a set of specified
train lines with desired functional requirements and fetstns given by the infrastructure. The next sections
describe the data needed to construct a PESP model and thlamexow this information is represented in the
model.

Necessary Data to Construct a PESP Model

Macroscopic Topology

The first step in developing a PESP model for railway timetgidanning is to define the level of detail for
the (macroscopic) infrastructure model by specifying acettations, line junctions and crossing points. The
elements of this set constitute thedesof the macroscopic infrastructure. A node is needed for ataton
where (i) train sequences are allowed to change, (ii) tiaislend, or (iii) we want to offer connections for
passengers. Additional nodes must be placed at importamjunctions outside of stations, where trains can
change tracks (e.g., to overtake), or where the number aflpbiracks changes. It is possible to vary the level
of detail in the macroscopic topography depending on howrately junctions and other infrastructure are
modelled. The nodes of the macroscopic topology are coaddntedgeshat represent the tracks connecting
two consecutive nodes. Normally station capacities arak ti@pologies inside a station are not included in this
macroscopic topology. They are considered in a consegutioee detailed and computational step performed
locally [22, 3]. This two-level approach has been succdlgspplied several times [18], [2], [14], [21]. In this
paper concentrate on the first (macroscopic) part of thisléwel approach.

Trains

Once the macroscopic topology has been defined it is posibdiefine the train services. For every train
service we want to schedule, we have to fix a path through tleeaseopic topology and define conditions on
the corresponding train’s driving behavior. A sequence a€rscopic nodes defines the route from the starting
station to the final station. For every edge on this path we l@vix the track used by each train as well as a
lower and upper time limit the train needs to move over thessponding track. Similarly, it is also necessary
to define a time interval specifying bounds for the dwell @ nodes where trains stop. In this case bounds
are set to provide a minimal time for passengers to board ligtit,eand a maximum reasonable time this train
can wait in the station. If a node just stands for a junctiom station where the train does not stop the lower
and upper dwell time bounds can be set to zero. It is alsolpedsi define turnaround time conditions for every
train at its final station as well as time restrictions on thieimal and maximal total driving time over a longer
path through the network. To refer to a train service, we usenabert; € Z called train service number.

Simplified Safety System

In addition to defining the topology and the train servicess necessary to define a simplified version of the
safety system in the model to prevent train overtakings aodsings. This is done by introducing headway
constraints between every pair of train using the same titltiksse headway constraints can be train and track
specific.
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Additional Functional Requirements

In addition to the macroscopic infrastructure constraitiisre are some further options to describe functional
requirements for the set of train services being modeledekample, it is possible to specify lower and upper
bounds for connections between two trains in a station toeseftravel time targets for passengers making
connections between the trains. It is also possible toempassenger friendly distribution of trains serving the
same route using frequency constraints, and it is of courssilple to constrain any train departure and arrival
time to a desired time interval.

The Period Length

Before starting to construct a periodic timetable, it isessary to fix the period length, which is denofed
Often the period is 60 minuteg (= 60) or 3600 secondsl (= 3600), if planning must be done with a finer
time discretization. It is also possible to choose a timeopesmaller or larger than one hour. The important
characteristic is that a constructed timetable can be tegp&dthout conflict between two periods. These criteria
must be part of the PESP model.

Formulating the PESP Model

Once the data has been defined it is possible to formulatel@matical model to solve a macroscopic periodic
timetabling problem satisfying all the infrastructuretriesions and functional requirements. The aim of this
timetabling problem is to find feasible departure and aktivaes for every train at every node of its route
through the macroscopic infrastructure. These departuleagival times are called theventsof the periodic
event scheduling problem and constitute the/set

More formally, a macroscopic timetable is a functmnV — [0,T) uniquely assigning a tima(v;) =:
15 € [0,T) to every event; € V in our model. Thus, for every departure and arrival ewgne introduce
a variabler; which can be considered the decision variable for the prolsé identifying the departure and
arrival times being sought in the model.

Each condition on the desired timetable mentioned in Taldlenlbe described as a constraint between
two event timesg and 7; as a minimal and maximal time which has to pass between thedwesponding
eventsy; andv;. We thus introduce a PESP constraint between two event tiaesd 77, as a constraing;; € A
with three parametersij = (lij, uij, type; ), wherel;; < u;; describe the lower and upper bound for the diffe-
rence between the two event timgsand 7, andtype; € {cTrip,cDwell,cHead cFreq cConncSlot cDep}
describes the type of constraint explained in Table 1. Wiindigish between these different types of constraints
to have a better overview for modeling. From a mathematioaitpof view they do not differ. A constrairg;;
is satisfied if and only if

lij < (m—m) modT < uj, (1)

where the modulo operator is important to express the peiigpdequirement.
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TABLE 1: Summary of the Different Constraint Types

cTrip  For every train, constraints of typ rip are given between every departure event and the
subsequent arrival event modeling the minimal and maximgingj time this train needs
for the corresponding distance.

cDwell Every trip constraint, except the last one to the final stat®followed by a dwell constraint
between the arrival and departure event of a train in the sstat®n (node) specifying
bounds for the dwell time at this node.

cHead With constraints of typeHead a simplified safety system is modeled. For every pair of
trains using the same track, a headway constraint is intextiwhich ensures that the time
passing between the corresponding arrival and departtine beginning and the end of this
track are separated by at least the headway ting&nce the order of trains is normally not
determined at this point, a constraint with lower botmrahd upper bound — his used for
every pair of train using the same track.

cFreq Ifthere are trains with a smaller peri({d F > 1,F € NthanT, this train has to be modeled
F times and frequency constraints fixing an exact distancedmat every departure event
of these trains at each station have to be added.

cConn To model a desired connection, a constraint between theabavent of the first train and
the departure event of the second train in the corresporstategn requiring the allowed
transfer time is added.

cSlot  To fix a certain time event in a desired interval, an additiorale, called “zero vertex”,
is introduced. The zero event will take place at the time @pmhdently of every train, so
constraints between this zero vertex and the desired exeadaed to constraint its time.

cDep To separate two trains serving a similar offer by at leégdtme units and at most; time
units, constraints of typeDepare used.

cOverall Constraints of typeOverall are used to fix minimal and maximal total travel times for a
train from its first station to the end destination. This canused to set required buffer
times.

A PESP model can be visualized as a directed graph (Figuieh&)top part of the figure shows four
train pairs running between Luzern and Ebikon during thecifipe period (one suburban train, two regional
express trains and one intercity train). The middle parhefdiagram shows the simplified topography and the
bottom part shows how the schedule and topography is refiessan the PESP model.
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FIGURE 1: Example of a PESP graph for the route Luzern to Ebikon with a change from a single track
line to a double track line in Rotsee and four trains running in both directions.

Every event; €V defines a vertex and every constraajte A a directed edge from vertexto vertex
vj. To every edgey; we assign a closed interval describing the time which shpakbs between the time of
eventy; and the time of event;.

3 SOLUTION METHODS

The PESP is proven to be a very hard problé¥iP{hard, [20]). This means that in the worst case, compu-
tation times grow exponentially with the problem size (gslB = NP,[5]). Nevertheless, the development of
algorithms to solve the PESP has been progressing for $geens.

There are two main methods for solving a PESP model: constpaogramming and mixed-integer
programming [13]. The first method, constraint programmiogether with the PESP model is core element
of the Dutch railway schedule planning software DONS (Desi§Networks Schedules) [9] and is also used
for TAKT, a German program system [15]. The second methodediinteger programming, has been used in
practice for smaller projects, for example a new timetablestruction for the underground metro train system
of Berlin [11] but has not yet been used on a large scale tiohefadanning project.

In the mixed-integer programming approach, integer andirmoous variables are used to describe the
PESP model in a system of linear inequalities, which is cetepl by an objective function for optimization.
These models can then be solved by branch-and-cut methpdsgdtemented in state-of-the-art commercial
solvers. Using continuous time variables, direct optittidracapability and the possibility of adding further
constraints not directly modeled in the PESP graph thistisolumethod has a number of advantages over
constraint programming and is therefore used in this rebear
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The straightforward mixed-integer linear programmingratation, called “Classical MILP formulati-
on” uses two types of decision variables: continuous vésaty for every event time and integer variablgs
for every constraing; € A to model the periodicity. Every departure or arrival timeof the desired periodic
timetable must have a value between 0 and the total time@&ri@ < 17 < T, Vv; € V). Moreover, these event
times have to satisfy every condition of the PESP model, iwhie can formulate directly as in the PESP mo-
del. The only difference to equation (1) is the replacemémihe® modulo operator mod by p,- T, allowing
addition of an arbitrary integer multiple of the time peribdo ensure periodicity.

Several possible objective functions for this problem halveady been examined including the minimi-
zation of total travel time, maximizing a specific timetalddustness measure, or minimizing rolling stock [2].
As described in Section 5 this research used minimizatidataf travel time as an objective function, summing
up the activity durations associated with each trip, dwetl aonnection constraint. The classical MILP can
therefore be stated as follows:

Minimize fobj(1T)

subject to la < 75 — 15+ paT < Ua Vaec A
o< m<T Y €V
Pa € Z Yac A

Besides the classical MILP formulation, which directlyléwés from constraints of the PESP model,
there exists a second formulation called cyclic MILP foratign [16, 10]. The cyclic formulation turned out to
be more efficient for several test cases [10].

Instead of directly considering all time eventsas decision variables, time differences between every
pair of event times connected over a PESP constraint are Tisede new variables, := 15 — m; for every PESP
constraintg;j € Aare called tension variables in analogy to electrical nekaidlo satisfy every PESP constraint,
each tension variable, has to lie between its corresponding edge bouhds &, < uy). In addition to these
continuous tension variables, integer variables are agaipssary to require a periodic timetable. Similar to an
electric circuit, the directed sum over all tension vamégbhlong a cycle in the PESP graph, modulo the total
time, has to be zero. Thus, for every cy€édn the PESP graphy occ+ Xa — Y acc- Xa = T o, whereC™ and
C~ denote the set of every positively oriented and negativegnted edge along cycle, andqc is an integer
variable called cycle periodicity variable for cydle

Minimize fobj(X)
subject to la <Xa< Uy YaeA
Zxa—ZXa:Toc VC € 65
acCt acC~
Xa € RT vac A

OceZ VC e 68
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Since there are exponentially many cycles in a general giaplould be necessary to introduce the
same number of additional constraints and integer vasaltiewever, it has been shown that it is sufficient
to require this cycle constraint for every cycle out of aregdr cycle basegg of the PESP graph (a much
smaller subset than the set of every cycle) [12] to ensureeiery cycle satisfies the cycle constraint. For
a general graph there exist a huge set of possible integés bgses. Fortunately, they do not influence the
result of our timetable construction, but they have a sigaift impact on computation time. The choice of a
best cycle basis to this problem is still an unresolved mebequestion. Empirically it has been shown that
an integral cycle basis constructed out of a minimum spantree (with respect to the edge spans as weight)
leads to good performance and therefore this approachdsiats in this research. The objective function can
be translated from the classical MILP formulation. To siifyphotation it will from here on be referred to as
PESF{V,A,CKB, fobj(X)).

4 HIERARCHICAL DECOMPOSITION METHOD

Motivated by planning practice and manual timetable caoiesitvn, our goal is to study the influence of hierar-
chical train prioritization in timetable construction \ttee periodic event scheduling problem. We define priority
classes by dividing the whole set of train services (tripg) p > 1 disjoint groups. In every iteration, one group
of train services is added to the scheduling problem whitestraining previously scheduled train runs to a cer-
tain time interval of sizé,, around their scheduled time from the previous iteratiotfifeDent variations of train
service partitions and interval sizgswere tested to reveal dependencies between these two piaranm®m-
putation time, and the quality of the obtained timetabldsis Bection defines the hierarchical decomposition
method in more detail and specifies the algorithm. The resuilt be analyzed in Section 5.

Let T be the set of all train service numbers contained in a coraidBeESP model with event sét
and constraint seA. To partitionT, into p different groups for prioritization, we define a functignio : T} —
{1,..., p} assigning a priority valu@rio(t|) to every train service numbegre T,.

In the first iteration, only train services of priority 1, .i.¢he setprio*l(l), are scheduled. Since a
reduced set of trains is being considered only the eventscanstraints corresponding to these trains need
to be considered. Léf; be this reduced set of events, containing all events carrebpg to train services
of prio~%(1), plus the zero time event. The reduced constrainfAsehen is defined as the set of constraints
contained iPA whose end nodes both belongp(edges of the induced subgraph oVey.

To compute a first partial timetable, it is necessary to sBESRV1, A1, €g|a;; Tobj(X)|a,), WhereCg
and fopj(x) are the standard cycle basis, and the objective functioningmization of total travel time (as
specified in the previous section), reduced to the smalleraio of tension variables correspondinghtp

Let M@ be the set of all event timen,ﬁl) in the solution of this first reduced problem. To fix this resul
within a time interval of size,, around this solution, new slot constraints are introduagdetery time event
vk € V1 as

t t
stofl s afd = (10—, 4 ¥ i
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and all slot constraints are coIIectedAr%))(. If the first partial timetable problem has no solution, timtire
timetabling problem is infeasible.

In every further iteration, 1 < i < p, the previous event s& i is enlarged by adding all events
corresponding to train services of tité priority group prio—(i) and defineAj again by the set of cons-
traints of A with both end nodes ikj. We add the slot constraint!s(f'&l) to the current constraints and solve

PESRV,,A UA(ifl),%B\MAa,l), fobj(X)|a ). As in the first iteration, after computing a partial timd&a new
fix

fix
set of slot constraints for every time eventc V;, denoted b)A?i)X, is constructed in every further iteration. If a
partial PE SPis infeasible, we stop the iteration. In Figure 2 a flow ch&gcam summarizes this steps for one
fixed time interval,,.

Start with first prio-
ritisation group (p, = 1)
and an empty set of
fixation constraints Ay,

Construct PESP graph
induced over all events

Output: "No solution
found to this fixation t,,
and prioritisation
function prio".

Add current fixation
constraints Ay, to —>
this PESP graph.

Compute corresponding
MILP and solve it with
CPLEX.

y

if there is
by one. — to fix this sol tg P — —_— — | table, obJectlv.e val.ue
o tix this solution and computation time.
i% =: Apig.

FIGURE 2: Flow chart for one hierarchical iteration for a fixe d parameter t,, and a given set of prioriza-
tion groups.

—

to train lines of groups
1,..., Pa-

> if there is >
no solution

Define a constraint for

The main control parameter of the algorithm is the intereagtht,, which controls the degree of
freedom of higher priority trains when scheduling the loweority trains. The parameter can vary from a
complete fixation t(, = 0) to complete freedomt,{ = T). In the latter case, the hierarchical decomposition
problem equals the original complete PESP problem.

Enlarging parametdy, starting from zero up tow = T, we therefore obtain a transition from a strictly
sequential planning scheme as one extreme to a fully simadtas planning as in the standard PESP. Selecting
a suitablet,, value is crucial for the algorithm running time and the solutguality. In particular, a too smdij,
might create infeasibilities during the iterations eveihd original simultaneous PESP is feasible. Thus, in case
of infeasiblity, a simple remedy would be to restart the atpm with a largett,,.
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5 COMPUTATIONAL RESULTS

The decomposition method described above was tested usingpiabling problem from central Switzerland
containing the three cities Luzern, Zug, and Arth-Goldaaching up to the main corridor Olten-Lenzburg in
midland and to lake of Zurich containing Pfaffikon SZ and Whla

Lenzburg

[ Zofingen |

Riz-cE Thalwil
[Horgen 0. ]
~Sprint
Baar
s1
e
Rotkreuz 2ug
J [ L @
ECZ
(wetchwit ) piatikon
sz
)
I | Anhfjl
- LGoldau J -
Erstfeld

FIGURE 3: Line map of the model

The data used to build this model were taken from the timetgldoftware used at the Swiss Federal
Railways (SBB). Out of over 7500 passenger trains runniregyeday on Switzerland’s railway network, all
periodic train services using the infrastructure of theecgtady region were extracted. Driving paths, minimal
trip and dwell times as well as all commercial stops are reach fthe data set. Fixing of upper bounds for
the dwell times is a crucial point to allow train crossingsl @vertakings. In our model crossings are allowed
and automatically determined by the algorithm in all stadigvhere crossings are allowed in today’s timetable.
Signal headways are directly extracted from the data fodiatances and train types. They range from 1.75
minutes for very frequently used infrastructure elememtdaué minutes for sparsely used tracks. Altogether
the case study region contains 159 stations and 113 peti@dgiis per hour. Out of these 159 stations 68 had
to be included in the macroscopic topology because of vgrireck numbers and signal headways, as well as
crossing points and ending train services.
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FIGURE 4: Macroscopic topology of the model

The resulting PESP model contains 1483 events and 6214ramtst There are 23 connection cons-
traints modeling high priority connections between traifthe chosen model. Furthermore, functional require-
ments such as time distances between trains with similanwncial offers are automatically taken from today’s
timetable and are included in the model via 108 frequencysapdration constraints. Using overall constraints,
a minimal buffer time of 7 percent is required for all traiips. The objective function minimizes the total travel
time (sum of all used trip, dwell and connection times) oftedins passing the considered region and has its
optimum at 3109 minutes.

The remainder of this section describes the computati@sailts for the example and discusses in par-
ticular the influence of the two decomposition paramepeis andt,,. All computations were performed using a
compute server with 2x2 Intel X5650 CPUs each with six coresthe MIP solver of IBM ILOG CPLEX Op-
timizer (Version 12.4) with an optimality gap of 0.5%. Theakation tested every even value for the parameter
tw (train fixation interval), starting from a complete fixati¢ip = 0) up to a weaker fixation of +/- 16 minutes
(tw = 32). The allocation of prioritization groups for the hierlical decomposition is illustrated in Figure 5. As
a first priority group all fast trains are taken. Then all cegil passenger trains are automatically distributed in
a predefined number of groups corresponding their geogralpposition in the model. The number of groups
(p) varies from three groups up to seven and is part of our aisalggarding computation time and quality.
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The hierarchical iteration as described in Section 4 andgtilhted in Figure 2 is done for every even
fixation value fromt,, = 0 tot,, = 32 and for every groups size= 3 to p = 7. Figure 6 gives an overview on
the results. The first graphic of Figure 6 shows dependemntitee size of fixation intervaly, and computation
time. As expected, a very strong sequential planning (stpphas much faster computation times than more
synchronous plannings with interval sizes of half an hotie Tomputation time does not grow monotonously
since enlarging the fixation interval allows the model to fireslv timetable variants from one group to the next,
which in some cases can accelerate the solution processesteifascinating result is the influence of the num-
ber of prioritization groups. Although there are more MIBsolve for a larger number of groups, the solution
process is faster fgqp = 5, 6,7 than forp = 3,4.

= Groupl(ICtrains) === Group3 — Group7

— Group 2 — Group 4

Thalwil

Arth— 1
{ coldau_ |

Erstfeld

FIGURE 5: Example for the allocation of prioritization grou ps for p=7.

Comparing these computation times of the first graphic withdorresponding objective values in the
second graphic, the results show the problem of completgesgial planning. For very small fixation intervals
tw the algorithm ended in infeasiblity. It was not possible daol @ll prioritization groups without moving train
departure and arrival times of already included trainshin ¢ase ofp = 3 a first feasible timetable could be
found for a fixation interval of siz&, = 4 with total travel time (objective value) of 3168 minutesil&ging
the number of prioritization groups the first occurrence &asible time table moves more and more to larger
fixation intervals. Up from an interval size of 18 minutesoatise last computation series found a feasible time-
table. Observing the trend of objective values comparinipédixation interval sizet() the solution quality of
our timetables, measured with total travel time, grows &ogér values of,. Interesting here are also the good
results forp = 6 andp = 7 starting from the first occurrence of a feasible timetablefrom a fixation interval
of size 15 minutes, all objective values stay at a certaiallef/quality not exceeding 0.5 percent of the optimal
total travel time.
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Computation Time

depending on tw
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FIGURE 6: Computation times and objective values refining tke prioritization function fromp =3 up
top=7

For a better comparison of our new solution method for theRPESdel to the complete synchronous
solution process we defined a straightforward method strgntpgether all computations for one prioritization
group starting with,, = 0 and enlarging,, until a solution satisfying our expectations was found. Témult is
shown in Figure 7 and shows clear advantages to the compiet@renous solution process. All hierarchical
decomposition methods for all prioritization groups frare= 3 to p = 7 find a first feasible timetable in less
than 10 minutes, while the original, completely synchramethod finds a first feasible solution only after 39
minutes. Furthermore, the optimization process was muathifan all hierarchical decomposition methods than
in the complete synchronous method. After three hours ctettipn time, the original method still hasn't rea-
ched a total travel time comparable to the hierarchical ohgpasition methods. Again, the prioritization groups
for p=>5,6,7 show better results than using only three prioritizatioougs.
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Complete Hierarchical Iteration

compared to synchronous optimisation

g‘ 3180

.3 3170 — syrichronous
£ =60 I p=3

E — p::l

g 3150 p=5

§ 3w p=6

£ 3120 —

S 3110

'g' 0 1200 2400 3600 4800 6000 7200 8400 9600 10800

ime (s)

FIGURE 7: Comparison of the new hierarchical decompositionrmethod to the original synchronous op-
timization process.

To find a good number and adequate choice of prioritizati@ugs it is worth considering the different
computation times for all MIP during one iteration. If thésene MIP having a remarkably higher computation
time over different sizes of fixation intervals then the wehdecomposition method can be improved by further
partitioning the corresponding prioritization group. O tother hand, if there is one MIP, especially the first
one, with a very short computation time it can be beneficiahdd some further trains to this prioritization
group. The first prioritization group often can include mamgre trains than the remaining groups.

6 CONCLUSION

This paper introduces a hierarchical decomposition metb@wlve instances of the periodic event scheduling
problem (PESP) via its mixed integer linear programs (MIEkdtjnulation. Train services are partitioned into
different priority groups and introduced into the scheulgllproblem step by step, where solutions of previous
steps are only fixed within a specified time interval. Theadtrction of these two parameters (number of prio-
ritization groups and time interval) allows a continuowngition from fully sequential timetable construction
up to a fully simultaneous planning of the whole problem. tibe original MILP solution approach). Therefore
the discovery of a feasible timetable, if there one existenisured.

The method was tested on a model describing a time tablingtsin over 159 stations in central
Switzerland and shows promising results. Using the hiareat decomposition method as a heuristic method
to solve the PESP can improve computation times while ojigiiaptimal or close to optimal schedules. For
all considered sizes of priority groups the new method foiinstl feasible solutions faster and showed a faster
optimization process than the corresponding completelsgnous solution process.
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The results of this paper also show that strong sequentiedtéible construction, without backward
iterations, can quickly end with infeasible subproblensss@on as there is no large capacity surplus. Using an
intermediate time fixation interval size of about 10 to 30 utés seems a suitable and robust choice, and the
resulting computation times and solution quality are rekably good.

Decomposition in general plays an important role in impngvalgorithms for timetabling. Interesting
areas for future research include further examinationeeptoposed train hierarchical decomposition methods
for national problem instances. Another is to consider nu@eply the relationship between its parameter set-
tings and the corresponding mixed-integer linear program.

*IBM, ILOG, and CPLEX are trademarks of International Busim®achines Corporation, registered in many jurisdictions
worldwide. Other product and service names might be tradesyad IBM or other companies.
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