Can information technology help rail play a greater role in preventing climate change?

Andrew Nash
Vienna Transport Strategies

Professor Dr. Ulrich Weidmann
Marco Luethi
Institute for Transport Planning and Systems
ETH Zurich
Agenda

1. Introduction: IT and Railway Potential
2. The Problem
3. Information Technology in the Railway Industry
4. Three key types of IT Applications
 - Scheduling and timetable planning;
 - Operations management and dispatching;
 - Simulation (infrastructure planning);
5. Upcoming Conferences
6. Conclusions and Recommendations
Introduction

• Research Goal:

 Identify opportunities for using information technology to improve railway operations and service.

• Research based on results presented at IT08.rail conference supplemented by literature review.

• Presentation Goal: Highlight upcoming conferences and encourage participation from interested railway professionals:

 – Rail Zurich 2009 - IAROR Conference - February 11 - 13, 2009
 – IT10.rail conference - Zurich - January 21 - 23, 2010
Rail’s Potential for Helping Address Climate Change

• “The railway will be the 21st Century’s preferred mode of transport – if it can survive the 20th Century.”

• Railways could help reduce energy consumption, improve the environment and reduce climate change.

• But, potential customers value the independence and high quality service provided by automobiles, trucks and airplanes.

• Railways have a window of opportunity – but they must use new technologies including IT to create:
 – New production processes,
 – New products and
 – New services
 ... tailored for 21st Century customers.
The Problem

• Rail is an attractive and efficient means of transport in many market segments, including:
 – Bulk freight (e.g. coal)
 – High density passenger routes (e.g. HSR)

• But: while volumes have been growing, mode share is generally falling. Why?
 – Capacity constraints
 – Demand for higher quality service by passengers & freight

• In some markets, e.g. European freight corridors, California Capitol Corridor, where institutional barriers have been reduced, real partnerships have been created and new products introduced, rail has been particularly successful.

• These successes highlight rail’s strong potential.
Compounding the Problem: More Trains = Lower Quality

- Rail capacity is a function of:
 - infrastructure quality
 - type of operations
 - scheduling assumptions

- Railway service quality:
 - punctuality
 - reliability
 - comfort/security
 - price

- As demand increases quality decreases, first slowly, then sharply.
- Timetable and dispatching improvements can increase the number of trains operated while maintaining the same quality of service.
Solving the Problem:
Improving Quality and Increasing Capacity

1. Add infrastructure
 - Expensive
 - Difficult (especially where capacity is often most needed!)
2. Revise schedules (timetables and organizing principles)
3. Improve operations management (e.g. dispatching)

Best: do all three! But …
- How do you decide what to do?
- How do you set priorities?
- How do you operate in the meantime?

Information technology plays an important and growing role in answering these questions.
• Key benefit of rail IT applications is their ability to test many different alternatives quickly and accurately, enabling planners and operators to make better decisions.

• The main types of rail planning IT applications parallel the three main types of capacity/quality improvements above:
 1. Scheduling and timetable planning;
 2. Operations management and dispatching;
 3. Simulation (infrastructure planning);

• An important element of current rail IT research is linking applications and adding more automated analysis functions.

• These planning applications are also being more closely linked with ‘administrative’ rail IT applications (e.g. staff scheduling).
1. Timetable Planning

- The timetable is a railway’s central organizing element;
- Therefore … it forms an important basis for many rail information technology applications.
Timetable Planning Strategies

• Rail timetables need to be both:
 – Stable: able to recover quickly from service disturbances and delays, and
 – Robust: able to function despite service disturbances and failures.

• IT applications developed for planning timetables use conceptual scheduling principles including:
 – Stable and simple service concepts (e.g. Taktfahrplan);
 – Optimization of train connection relationships;
 – Achievable (realistic) conflict-free train paths;
 – Resource planning (e.g. staffing); and
 – Real time slot access and pricing.
Slot pricing is a fundamental element in creating a more effective and efficient rail system.

Slot pricing is complex and prone to charges of favoritism and discrimination.

IT timetable planning systems can be used to e.g.:
- Identify opportunities for adding trains to heavily used networks;
- Create a systematic approach for setting slot prices and priorities;
- Explore opportunities for real-time slot pricing strategies (e.g. auctions in the case of delays);

Focus is on linking different applications and creating more transparency in the system.
Three ideas for using IT to optimize rail operations:

1. Improved dispatching systems (next slides);

2. Improved train control systems:
 - Combine real time dispatching information with driver-machine interfaces to more precisely implement timetables;

3. Improved travel information systems:
 - Customers expect high quality real time information (automobile GPS, freight delivery);
 - Use ability to re-direct passengers (and trains) to provide more customer-friendly delay/incident recovery plans.
Example Rail Operations: Improved Dispatching Systems

- **Dispatching IT:**
 - *Today* = monitoring and conflict detection;
 - *Tomorrow* = provide solutions and consider more variables (e.g. energy use).

- **Key issues:**
 - Problem complexity;
 - Can machines ‘anticipate’ problems (like an experienced dispatcher) or simply ‘react’?
 - Data acquisition (data is out there, but where?);
 - How do you measure success?
 - Human factors (will dispatchers accept the help? Generational issue: T-Rex vs. PacMan vs. iPod?).
Puls90 - addresses complexity by dividing network into zones with excess capacity (compensation zones) and zones operating at capacity (condensation zones).

Two main principles of Puls90 are:

- Automated real-time rescheduling in case of delays or disturbances
- Driver-Machine-Interface with real-time data to adjust driving behavior
3. Railway Simulation and Infrastructure Planning

- ‘Classical’ application of information technology to railway planning and operations.
- Planners can develop and test many different combinations of:
 - Infrastructure
 - Rolling stock
 - Schedules/operating strategies
- Especially effective at identifying the most cost effective solutions;
- Future: more interfaces with other rail IT applications and more automated problem analysis.
Railway Information Technology Conferences

IT08 RAIL

Closing the Loop - Capacity and Quality of Railway Systems
24 - 26 January 2008 in Zurich

- **RailZurich2009: IAROR Conference**
 - February 11 - 13, 2009
 - 3rd International Seminar on Railway Operations Modeling and Analysis - Engineering and Optimization Approaches

- **International Association of Railway Operations Research (IAROR)**
 - www.iaror.org

- **IT10.rail Conference:**
 - 21 - 23 January 2010
 - ETH Zurich
 - www.it10rail.ch - details forthcoming!
Day 1: User Workshops
 - Viriato timetable development and analysis application
 - OpenTrack rail simulation application

Atelier - Automatic Train Traffic Control Systems of the Future - group workshops discussing ideas and problems;

Day 2: Technical Symposium (next slide);

Day 3: Excursion - Lötschberg Basis Tunnel and BLS tunnel control center.
Stability and Reserves
- Dagmar Haase, DB Netz AG - The relationship between stability and reserves
- Prof. Leo Kroon, Erasmus University Rotterdam - Robust timetables: Determination of reserves in the planning process

New Methods in Dispatching
- Dr. Felix Laube, SBB AG - Puls 90 – A new method to deal with reserves from strategic planning up to operations
- Prof. Eckehard Schnieder, TU Braunschweig - What is the state of the art of current dispatching systems? What are the most promising approaches?

Route Management and Open Access
- Jean-Michel Dancoisne, CEO Thalys - Planning of top-quality international HS routes
- Roland Hartkopf, Railion Germany - Challenges and opportunities with Open Access for a freight operator

Incident Management and Quality Assurance
- Martin Wyss, BLS AG - The human dispatcher in the complex control technology environment
- Prof. Ingo Hansen, TU Delft - Quality assurance: Analysis of operational data as input to the planning process of future timetables
- Prof. Dr. Ulrich Weidmann, ETH Zurich - Conclusions: The reserve as an adjusting lever in the over-all process of planning, operations and quality
Conclusions

- Railways could carry a greater share of freight and passenger trips thereby helping reduce energy use and climate change;
- Rail IT applications are already helping railways increase capacity and improve service quality ... but
- To succeed railways must combine these new technologies with institutional change to create new products and services tailored to meet the demands of 21st Century customers;
- Two important areas for further research are:
 - Technical innovation to help improve rail IT applications;
 - Socio-institutional research on how new technologies can be applied within an old business model to create truly innovative new products.
Thank you very much for your attention!

Andrew Nash
Vienna Transport Strategies
andy@andynash.com
http://www.andynash.com

Professor Dr. Ulrich Weidmann
Weidmann@ivt.baug.ethz.ch

Marco Luethi
Luethi@ivt.baug.ethz.ch

Institute for Transport Planning and Systems
ETH Zurich
http://www.ivt.ethz.ch/index_EN